<u>Sree Siddaganga College of Arts, Science and Commerce , B.H Road, Tumkur</u> <u>DEPARTMENT OF MATHEMATICS</u> <u>Mathematics Question Bank</u> <u>II BSc IV Semester Paper -4.1 Alegbra and Calculus -2</u>

TWO Marks Questions

- 1) Evaluate $\int_0^1 \int_0^1 \frac{dxdy}{\sqrt{(1-x^2)((1-y^2))}}$
- 2) Evaluate $\int_{-1}^{1} (x^2 3x + 1) dx$.
- 3) Evaluate $\int_{c} (3x + y) dx + (2y x) dy$, along the curve $y = x^{2} + 1$ from (0,1) to (3,10).
- 4) Evaluate $\int_0^2 \int_0^{\pi} r^2 \sin\theta \ d\theta dr$
- 5) Find the unit normal vector to the surface $(x-1)^2 + y^2 + (z+2)^2 = 9$ at (3,1,-4).
- 6) If the Vector $\vec{F} = (3x+3y+4z)i + (ax-2y+3z)j + (3x+2y-z)k$ is a solenoidal, Find 'a'.
- 7) Prove that $div(grad\varphi) = \nabla^2 \varphi$.
- 8) Find the directional derivative of $\varphi = xy^2 + yz^3$ at (2,-1,1) in the direction of $2\hat{\imath}+\hat{\jmath}+2\hat{k}$.
- 9) Prove that $\nabla(\varphi\theta) = \varphi(\nabla\theta) + \theta(\nabla\varphi)$ where φ and θ are functions of x,y and z.
- 10)Define a group. give an example.
- 11) Define order of an element of a group.
- 12) Find the order of each element of the multiplicative group $G=\{1, -1, i, -i\}$
- 13) Find the distinct left cosets of H={0,4,8} in the group (Z_{12} ,+₁₂).
- 14) Find the number of generators of a cyclic group of order 60.
- 15)Prove that every subgroup of an Abelian Group is Normal subgroup.
- 16)Define Normal Subgroup and give example.
- 17)Define Homomorphism of a Groups.
- 18)Define Kernal of Homomorphism of Groups.
- 19) State cayle's Theorem in Groups.
- 20) State lagrange's theorem in a finite Groups.

THREE Marks Questions

1) Evaluate $\iint_R xy(x+y)dxdy$ over the domain R between $y=x^2$ and y=x.

- 2) Prove that $\operatorname{div}(\operatorname{curl}\vec{F})=0$.
- 3) Show that (z_5, \bigoplus_5) is a group.
- 4) Evaluate $\int_{c} (3x 2y)dx + (y + 2z)dy x^{2}dz$, where c : x = t, $y = 2t^{2}$, $z = 3t^{3}$ and $0 \le t \le 1$.
- 5) Evaluate $\int_{c} (x + 2y) dx + (4 2x) dy$, around the ellipse $\frac{x^2}{16} + \frac{y^2}{9} = 1$, in the counter clockwise.
- 6) Evaluate $\int_c \frac{yz}{x} dx + e^y dy + \sin z dx$, where c is the curve $x = t^3$, y = t, $z = t^2$, $2 \le t \le 3$.
- 7) Show that $\int_{c} y^{2} dx + 2xy dy$ is independent of the path joining the points (0,1) and (1,3).
- 8) Evaluate $\int_0^1 \int_1^{1-x} xy \, dy dx$.
- 9) Find the directional derivative of $\varphi = xy+yz+zx$. In the direction of the vector 2i+j-k at the point (1,0,2). Also find maximum directional derivative.
- 10)Evaluate $\int_0^4 \int_0^{\sqrt{4-x}} xy \, dy dx$.
- 11) Evaluate $\int_0^1 \int_0^{y^2} e^{\frac{x}{y}} dx dy$.
- 12) Evaluate $\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} (x + y z) dx dy dz$.
- 13) If $\vec{f} = x\hat{\imath} y\hat{\jmath} + z\hat{k}$ then show that (a). div $\vec{f} = 2$, (b) curl $\vec{f} = 0$
- 14) Prove that in a group G, $o(a)=o(a^{-1}) \forall a \in G$.
- 15) If 'n' is any positive integer and 'a' is relatively prime to 'n', then $a^{\varphi(n)} \equiv 1 \pmod{n}$

FIVE Marks Questions

UNIT-1

- 1) Evaluate $\iint_{D} (1 + x^{2} + y^{2})^{\frac{-1}{2}} dxdy$, where D is the interior of lemniscate $r^{2} = \cos 2\theta$ by changing into polar co-ordinates.
- 2) Evaluate $\int_0^1 \int_{y^2}^{\sqrt{y}} \frac{y}{x} e^x dx dy$ by changing the order of integration.
- 3) Evaluate $\int_c (x^2 + y^2) dx + x^3 y dy$, where 'c' is the semicircle with centre at (0,4) and radius 2 units which lies in the first quadrant.

- 4) Evaluate $\int_0^{4a} \int_{\frac{x^2}{4a}}^{2\sqrt{ax}} dy dx$ by changing the order of integration.
- 5) Evaluate $\int_0^{2a} \int_0^{\sqrt{2ax-x^2}} (x^2 + y^2) dy dx$ by changing into polar co-ordinates.
- 6) Evaluate $\int_0^a \int_0^{\sqrt{a^2 x^2}} \int_0^{\sqrt{a^2 x^2 y^2}} \frac{dxdydz}{\sqrt{a^2 x^2 y^2 z^2}}$.
- 7) Evaluate $\int_0^1 \int_0^{1-x} \int_0^{1-x-y} (xyz) dz dy dx.$
- 8) Find the volume of the sphere $x^2 + y^2 + z^2 = a^2$.
- 9) Evaluate $\iiint_R (x + y + z) dx dy dz$. Where R is the region in the first octant bounded by the sphere $x^2 + y^2 + z^2 = a^2$ by changing it to spherical polar co-ordinates.
- 10) Evaluate $\int_0^{\frac{\pi}{2}} \int_0^{asin\theta} \int_0^{\frac{a^2-r^2}{a}} (r) dz dr d\theta$.

<u>UNIT-2</u>

- 1) Find the equation of the tangent plane to the surface z=xy at (2,3,6). Also find the unit normal vector.
- 2) If \vec{F} and \vec{G} are any two vectors .Prove that $\nabla . (\vec{F} \times \vec{G}) = \vec{G} . (\nabla \times \vec{F}) \vec{F} . (\nabla \times \vec{G})$
- 3) Find the scalar field φ such that $\nabla \varphi = y^2 z^3 \hat{i} + 2xy z^3 \hat{j} + 3xy^2 z^2 \hat{k}$ given that $\varphi(x, y, z)=0$ at the origin.
- 4) Find the directional derivative of $x^2y + z^2y xz^3$ at (-1,2,1) also find maximum directional derivative .
- 5) Find the angle between the normal's to the surface $xy = z^2$ at the point (1,9,-3) and (-2,-2,2).
- 6) If \vec{r} is the position of a point p (x,y,z) and $|\vec{r}| = r$, Show that $\nabla (r^3 \vec{r}) = 6r^3$.
- 7) State and prove Green's theorem in the plane.
- 8) Using Green's theorem $\oint_c (3x^2 8y^2)dx + 2y(2 3x)dy$ wher c is the boundary of the rectangular area enclosed by the lines x = 0, x = 1, y = 0 and y = 2.
- 9) Using Gauss divergence theorem Evaluate \$\iiint_v\$ div(\$\vec{f}\$) dv\$ where
 \$\vec{f}\$ = 2xy\$\hat{i}\$ + yz²\$\hat{j}\$ + xz\$\hat{k}\$. And s is the total surface the rectangular parallelepiped bounded by \$x = y = z = 0\$ and \$x = 1, y = 2, z = 3\$.
- 10) Evaluate by stoke's theorem $\oint_c yxdx + zxdy + xydz$, where c is the curve $x^2 + y^2 = 1$, $z = y^2$.

UNIT-3

- 1) PT G= $\{0,2,4,6,8\}$ is an abelian group with respect to multiplicative modulo 10.
- 2) Prove that every subgroup of a cyclic group is cyclic.
- 3) Prove that a subset H of a group G is a subgroup of G if and only if $HH^{-1} = H$.
- 4) State and prove Lagrange's theorem on finite groups.
- 5) Prove that in a Group 'G', $\forall a \in G$, $O(a) = O(a^{-1})$.
- 6) Let G be a Group and $a \in G$. if O(a) = n and (m,n) = 1 then $O(a^m) = n$.
- 7) Show that, if 'H' is a Subgroup of a group 'G' then $H^{-1} = H$. Is the converse true ?
- 8) Show that the Group $G = \{1, -1, i, i\}$ is cyclic Group with respect to multiplication.
- 9) If **a** and **x** be any two elements of the group G then prove that $o(a) = o(xax^{-1})$.
- 10) If G be a cyclic Group of order **k** and **a** be a generator then Prove that if $a^m = a^n \quad (m \neq n)$ then $m \equiv n \pmod{k}$ and conversely.

<u>UNIT-4</u>

- 1) Prove that a subgroup H of a group G is a normal subgroup of G iff gHg^{-1} =H $\forall g \in G$.
- 2) Prove that a subgroup H of a group G is a normal subgroup of G if fproduct of two right cosets of H in G is also a right coset of H in G
- 3) If H is a normal subgroup and K is normal subgroup G then Prove that $H \cap K$ is normal in H.
- 4) If G is a group and H is a subgroup of index 2 in G then Prove that H is normal subgroup of G.
- 5) If N is a normal subgroup of G and H is only subgroup of G, then Prove that NH is a subgroup of G.
- 6) If *f*: *G* → *G*' is homomorphism of groups with kernel K then Prove that K is normal subgroup of G.
- 7) State and Prove caylay Hamilton theorem.
- 8) If *f*: *G* → *G*′ is homomorphism of groups with kernal K then PT f is one-one iff K={e}, where e belongs to G

- 9) If f be a homomorphism from group G to *G*' and G abelian then Show that *G*' is also abelian.
- 10) If $f: G \to G'$ is homomorphism of groups then Prove that
 - a) f(e) = e' where $e \in G$ and $e' \in G'$.
 - b) $f(a^{-1}) = [f(a)]^{-1} \forall a \in G.$
