<u>Sree Siddaganga College of Arts, Science and Commerce , B.H Road, Tumkur</u> <u>DEPARTMENT OF MATHEMATICS</u> <u>Mathematics Question Bank</u> <u>I BSc II Semester Paper -2.1 Differential Equations</u>

TWO Marks Questions

Define 'order' and 'degree' of a differential equation. 1) Form the partial differential equation from the relation z = axy + b. 2) Form the partial differential equation by eliminating arbitrary function from $z = f(x^2 - y^2)$. 3) Solve : y'' - 2y' + y = 0. 4) Find the particular integral of $(D^2 + 9)y = cos3x$. 5) Solve $\frac{dy}{dx} + y = 2$. 6) Define the order and degree of the Partial differential equation. 7) Find the complementary function of $(D^3 - 4D^2 + 5D - 2)y = 0$. 8) Define linear d.e of order 'n' and Cauchy's Homogeneous d.e of order 'n'. 9) Solve $q = e^{\frac{-p}{\alpha}}$. 10)Solve $p^2-5p-6=0$ 11) Define Wronskian of u and v, which are functions of x. Hence find the Wronskian of $x \& \frac{1}{x}$. 12) Define linear d.e of order 'n ' and Cauchy's Homogeneous d.e of order 'n'. 13) Solve p+q=sinx+siny. Solve $p^2q^3 = 1$. 14) 15) Solve : $(D^3 - 8)y = 0$. 16) Find particular integral of y'' - 2y' + y = x - 1. 17) Find the integrating factor of $\frac{dy}{dx} + ysecx = tanx$. 18) Solve $p^2 + 5p + 6 = 0$. 19) Find the complimentary function of $x \frac{d^2y}{dx^2} - (2x+1)\frac{dy}{dx} + (x+1)y = x^2e^x$. 20) Find the particular integral of $[D - D']^2 z = e^{x+y}$. 21) Find the complimentary function of $(D^2 + 4D + 4)y = 0$. 22) Find the particular integral of $(D^2 + 5D + 6)y = e^{-3x}$. 23) Solve $\sqrt{p} + \sqrt{q} = 1$. 24) Verify for the exactness $(e^y + 1)cosxdx + e^y sinxdy = 0$. 25) Solve $2p^2 + p - 2 = 0$. 26) Solve $(D^3 - 3D^2 + 2D)v = 0$. 27) Find the particular integral of $(D^3 + 1)y = x^4 + 2x$. 28)

29) Find the complimentary function of the differential equation $(D^2 + 2D + 1)y = 0$.

30) Solve $(D^2 + DD' - 6(D')^2)Z=0$.

THREE Marks Questions

- 1) Solve $:\frac{dy}{dx} \frac{2y}{x} = 2.$ 2) Solve $:\frac{d^2y}{dx^2} - 3\frac{d^2y}{dx^2} + 4\frac{dy}{dx} - 2y = e^x.$ 3) Solve $:(D^2 - 1)y = 2 + 5x.$
- 4) Find the part of complementary function of the equation $xy'' (2x + 1)y' + (x + 1)y = x^2 e^x$.
- 5) Form the partial differential equation of all planes which are at a constant distance 'a' from the origin.

6) Solve
$$\frac{dy}{dx} + 2 \sin x = y \tan x$$
.

- 7) Find the Wronskian of e^x , xe^x and e^{-x} .
- 8) Find the complete solution of $\frac{d^2y}{dx^2} 5\frac{d^2y}{dx^2} + 7\frac{dy}{dx} 3y = e^{3x}$.

9) Solve
$$(x^2D^2 - xD + 2)y = x \log x$$

10) Form the Partial differential equation from $2z = \frac{x^2}{a^2} + \frac{y^2}{b^2}$ by eliminating arbitrary constants a and b.

11) Solve,
$$(1+x^2)\frac{dy}{dx} + y = \tan^{-1} x$$
.

12) Solve,
$$(1+e^{x/y})dx+(1-\frac{x}{y})e^{x/y}dy=0.$$

13) Solve,
$$\frac{d^2y}{dx^2} + 6\frac{d^2y}{dx^2} + 11\frac{dy}{dx} + 6y = 2e^x$$
.

- 14) Form the pde by eliminating arbitrary constants from the relation $z=(x-a)^2+(y-b)^2$.
- 15) Form the Partial differential equation by eliminating the arbitrary function from xyz $= \varphi(x+y+z)$.
- 16) Define Clairauts equation and find the G S of $y + p^2 = xp + 1$.
- 17) Find the orthogonal trajectories of the family of curves $r = e^{a\theta}$.
- 18) Define wronskian and find the wronskian of u = sinhx and v = coshx.
- 19) Solve $D^2 y = sin_3 x + e^{4x}$.
- 20) Verify the condition of integrability of (yz + 2x)dx + (zx 2z)dy + (xy 2y)dz = 0.
- 21) Solve $\frac{dx}{y^2} = \frac{dy}{x^2} = \frac{dz}{x^2 y z^2}$.
- 22) Solve $p^2 + q^2 = x + y$
- 23) Solve $z = px + qy + (p^2 + q^2)$

- 24) Reduce the equation into the linear d.e. , $2\frac{dy}{dx} ysecx = y^3 tanx$.
- 25) Find the orthogonal trajectories of the family of curves $x^2 + y^2 = c^2$
- 26) Define Wronskian and find the Wronskian of x and xe^x .
- 27) Find the particular integral of $(D^2 2D + 4)y = sin^2 x$
- 28) Solve $\frac{dx}{yz^2} = \frac{dy}{z^2x} = \frac{dz}{y^2x}$.
- 29) Form a partial differential equation from $x^2 + y^2 = (z c)^2 tan^2 a$.
- 30) Solve $\sqrt{p} + \sqrt{q} = x + y$.

FIVE Marks Questions

<u>UNIT -1</u>

1) Solve :
$$sinx cosx \frac{dy}{dx} = y + sinx$$
.
2) Solve : $x \frac{dy}{dx} + (1 - x)y = x^2y^2$.
3) Solve : $(ax + hy + g)dx + (hx + by + f)dy = 0$.
4) Verify the exactness and Solve $(3x^2y^4+2xy)dx + (2x^3y^3-x^2)dy=0$.
5) Test for exactness and Solve $(cosy + ycosx)dx + (3x^4y^2 - x^2)dy = 0$.
6) Test for exactness and Solve $(cosy + ycosx)dx + (sinx-xsiny)dy=0$.
7) Verify the exactness and Solve $x^2ydx - (x^3 - y^3)dy = 0$.
8) Solve $(5x^4 + 3x^2y^2 - 2xy^3)dx + (2x^3y - 3x^2y^2 - 5y^4)dy = 0$
9) Solve $(x^2 + y^2 + x)dx + (xy)dy = 0$.
10) Solve by finding an integrating factor $(x^2 + y^2)dx - (xy^3)dy = 0$.
11) Solve $\frac{dy}{dx} - 2ytanx = y^2tan^2x$.
12) Solve $x \frac{dy}{dx} = y + x^3 + 3x^2 - x$.
13) Solve $\frac{dy}{dx} - y = xy^5$.
14) Solve the Bernoulli's equation $\frac{dy}{dx} + y = y^2(cosx - sinx)$.
15) Find the singular solution of $(px - y)(py + x) = a^2p$ by using the transformation $x^2 = u$ and $y^2 = v$.
16) Solve $y - 2px + yp^2$
17) Find the General and singular solution of $y = px + sin^{-1}p$.
18) Find the orthogonal trajectories of the family $r^2 = a^2cos2\theta$.
19) Find the orthogonal trajectories of the family $ay^2 = x^3$.
20) Find the orthogonal trajectories of the family of curves $x^2 + y^2 = c^2$.

<u>UNIT -2</u>

- 1) Solve: $(D^2 3D + 2)y = 6e^{3x} + sin2x$.
- 2) Solve: $\frac{d^2y}{dx^2} 10\frac{dy}{dx} + 16y = e^{4x}sin2x$.
- 3) Solve $(D^2-3D+2)y = 6e^{3x} + \sin 2x$.
- 4) Solve $y'' + 8y = x^4 + 2x + 1$.
- 5) Solve: $(D^3 2D^2 + D)y = e^{2x} + x^2$.
- 6) Solve : $(D^3 1)y = (e^x + 1)^2$.
- 7) Solve: $\frac{d^2y}{dx^2} + 3\frac{dy}{dx} + 2y = \cos^2 x$.
- 8) Solve: $(D^2 + 2D + 1)y = x^2 + 1$

9) Solve:
$$\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + 4y = e^x \cos x$$

- 10) Prove that the two solutions $y_1(x)$ and $y_2(x)$ of the equation $a_o y'' + a_1 y' + a_2 y = 0$, $a_o \neq 0, x \in (a, b)$ are linearly dependent if and only if their wronskian is identically Zero.
- 11) Solve: $(D^3 + 6D^2 + 11D + 6)y = e^x$
- 12) Solve: $(D^2 6D + 9)y = e^{3x}(x^2 + 7x + 5)$.
- 13) Solve: $\frac{d^2y}{dx^2} 3\frac{d^2y}{dx^2} + 9\frac{dy}{dx} 27y = \cos 3x$.
- 14) Solve $(D^2-2D+5)y = \sin 3x$.
- 15) Solve: $(D^2 + 4)y = x^2 + 3$.

<u>UNIT -3</u>

1) Solve: $(1+x)^2 \frac{d^2y}{dx^2} + (1+x)\frac{dy}{dx} + y = 4\cos(\log(1+x)).$

2) Solve
$$x\frac{dy}{dx} + (1-x)y = x^2y^2$$
.

- 3) Solve $(x^2D^2 xD + 4)y = \cos(\log x)$.
- 4) Solve $(x^{3}D^{3} + 3x^{2}D^{2} 2xD + 2)y = 0$.
- 5) Solve $\frac{dy}{dx} + \frac{1}{x}\frac{dy}{dx} = \frac{12\log x}{x^2}$.
- 6) Solve $\frac{d^2y}{dx^2} + \frac{1}{x}\frac{dy}{dx} \frac{1}{x^2}y = 0$, given that $x + \frac{1}{x}$ is a solution.
- 7) Solve: $\frac{d^2y}{dx^2} + (2\cos x + \tan x)\frac{dy}{dx} + y\cos^2 x = \cos^4 x$ by change of independent variable.

8) Solve
$$\frac{d^2y}{dx^2} + y = cosecx$$
 by the method of parameter.

9) Solve $D^2y + y = secx$ by the method of parameter.

10) Solve
$$\frac{dx}{y-z} = \frac{dy}{z-x} = \frac{dz}{x-y}$$

11) Solve
$$\frac{dx}{(y-z)x} = \frac{dy}{(z-x)y} = \frac{dz}{(x-y)z}$$

12) Solve the system
$$\frac{dx}{x} = \frac{dy}{(x+z)} = \frac{dz}{(-z)}$$
.

13) Solve
$$(x - y)dx - xdy + zdz = 0.$$

14) Solve
$$(y + z)dx + (x + z)dy + (x + y)dz = 0$$
.

15) Solve
$$dx + (x + z)dy + dz = 0$$
.

<u>UNIT -4</u>

- 1) Form the partial differential equation by eliminating the arbitrary function from the relation $f(x^2 + y^2 + z^2, z^2 2xy) = 0$.
- 2) Form the partial differential equation by eliminating the arbitrary function from the relation $f(x + y + z, x^2 + y^2 z^2) = 0$.
- 3) Show that the function xyz = f(x + y + z) has partial differential equation is x(y-z)p + y(z-x)q = z(x-y).
- 4) Solve completely x(y-z)p + y(z-x)q = z(x-y).

5) Solve
$$(y^2 + z^2)p - xyq + xz = 0$$
.

- 6) Solve $p 2q = 3x^2 \sin(y + 2x)$.
- 7) Solve $q = (z + px)^2$ by charpit's Method.
- 8) Solve $(p^2 + q^2)x = pz$ by charpit's Method.
- 9) Solve z = pq by charpit's Method.
- 10) Find the complete integral of $(p^2 + q^2)y = qz$ by charpit's Method.
- 11) Find the complete solution of $(D^2 DD')z = sinxcos2y$.

12) Solve
$$[D^2 + 3DD' + 2(D')^2]z = x + y$$
.

13) Solve
$$[D^2 - 2DD' + (D')^2]z = e^{x+2y}$$
.

- 14) Solve $[D^2 DD' 2(D')^2]z = e^x(y-1)$
- 15) Solve $(p^2 q^2)z = x y$.
