Unil-II III BAC - VI Sen mathematics. (S.V.B) Paper - 6.2 a. (Number theory) Fermal's Little theorem: If 'P' is a prime and a in any integer such that (P in not a divinor of is) ie PXa and (a, P) =1, then at = 1 (modp) al = a (modp) Prendo primer: If P is a Composité possitive intege and a in any integer and a = a (mode) -then 'P' in Called a prendo prime to the bas a. If (0, 1) =1 then a = a broade) is Equivalent to the a = 1 (modp) For Examples: Entegern 341, 561, 645 arc prevdo prima. If show that the integer 341 is a pseudo prime Sol. Wehave P = 341 = 11×31 By Fermal's Little theorem whehave 2 = 1 (mod 11) @ 2 10 = 1 (mod 11) (210 =1 = (210) 34 = 134 (mod 11) 2340 = 1 (mod 11) - 1) Let (8, 21) 21, By formal's little theorem 8 21-1 = 1 (mand 31) 230 = 1 (mod 31)

```
2 11-1 = 1 (mod 11)
Let (311) =1,
               210 = 1 (mod 11)
                                      (10×56=560)
               (210) = 156 (mrd11)
                2560 = 1 (mrd 11) - 3
               217-1 = 1 (mrd 17)
Let (2, 17)=1,
                   216 = 1 (mrd 17)
                                        16 x 35 = Sto
                 (216)25 1 25 (mod 17)
                   2560 = 1 (mod 17) - 3
          from qu OO & D wget
                 2560 = 1 (mod 3x 11x17)
                9561-1 = 1 (mod 561)
       .. 561 in a prendo prime to the base L
31 S.T. 645 in a prendo prine
 Sd: let P=645 = 3x5x43
                                  3 645
                               5215
By Fermat's little theorem,
(a, 1) =1, a Pt = 1 (mod P)
                                  645=3×5×43
Lot (2, 3) =1, 23+ = 1 (mod 3)
             22 = 1(mod3)
             (22)322 = 1322 (mod 3)
                                       2×322=644
              2644 = 1 (mod 3) -(1)
```

When PtB charac a in any one of (r-1) possitive inty 1.2.3. -- (P-1).

Comider ax = 1 (mod 8) -0 & (a, 1)=1

then then enount a Umque integer a'

I not that a a' = 1 (mode), 1 = a' = (P-1).

84 a=a' TH a=1 & a=1-1.

then at = 1 (mod 1) ...

(a2-1) = 0 (mod 1) = 1 = 1 (a2-1) (a-1)(a+1)

- (1/2 = 1/2 = 1/6)

· Par or (atu) ie (a-1) = 0(mods)
(a+1) = 0(mods)

= a = (P-1).

10 & we omit the not 1 + (P-D.

Poirs a, a Where a tal. .. aa = 1 (mrdy)

= . 2.3- -- (b-x) = 1 (wage)

.. (P-2) ! = ((mrdp)

(b-1) (b-1) = (1-1) (ways)

(b-1) = 1 (med 1)

```
Problems: D & 7 in prime then S.T. (7-1) = +(mm)
         By Wilson's theory of oir prime
              then (P-U: = + (mrd Y)
      Let 1=7 in a prime
  To show that, (7-1) = -1 (mrd 7)
            6! = -1 (mod 7)
   let 61 = 1.2.3.4.5.6.
   But (1.6) = 6 = (4) (mrd7)
     (2.4) = 8 = 1 (mrd7)
      (35) = 15 = 1 (mrd 7)
 -. (1.6)(24)(3.5) = (-1)(1)(1) (mrd 7)
        1.2.2.4.5.6 = -1 (md+)
                6! E H (mody) Hence william then
   @ ef 13 in a prime then (13-1) = - (midt
        By wilson's theorem To show that
    P=013 in a prime then (13-1) = -1 (mod 13)
                            (12)! = -1 (modis)
   to ic 12! = 12.3. 4.5.6.7.8.9.10 11.12 (2000)
                                      = (-1) (mod 13)
  Let 1000 112 = 12 = -1 (mrd 13)
          2x7 = 14 = 1 (mod 13)
          3×9 = 27 = 1 (mod 13)
          4×10 = 40 = 1 mod(13)
           5x8 = 40 = 1 mod(13)
           6×11 = 66 = 1 (mod 13)
   · · (1-12)(2-4)(3-9)(4-10)(5-8)(6-11) =(-1)(1)(1)(1)(1)(1)(1)
                                            mrd 13)
```

```
1.2.2.4.5.6.7.8.9.10.11.12 = + (mrd 13) (7)
             12! = -1 (wind 13)
           (13-1) 1 = -1 (my 12)
35 Eq 17 in prime then S.T. (17-1) = -1 (mood 17
                               161 = -1 (mod 17)
```

By wilson's theorem

By pin prime then (B-U) = -1 (mrd 1) 84 P=17 then to now that (17-1)! = -1 (mod 17) 16! = - (mod 17)

Let 16! = 1.2.3.4.5.6.7.8.9.16.11.12.13.14.15.16 = + (mid 17 Let (1.16) = 16 = -1 (mrd 17)

(2-9) = 18 = 1 (mrd 17)

(3.6) = 18 = 1 (mrd 17)

(4.13) = 52 = 1 (mod 17)

(2.7) = 35 = 1 (mrd 17)

(10.12) = 120 E1 (mrd 17)

(11.14) = 154 = 1 (mrd 17)

(8.15) = 120 = 1 (mrd 17)

· · · (1.16)(2.9)(36)(4.13)(5.7)(10.12)(11.14)(8.15) =(-1)(1)(1)(1)(1)(1)(1)(1)(1) (mrd 17) 1-2-3 4-5-6-7-8-9-10-11-12-13-14 15-16 = -1 (mrd 17)

16 = 1 (mod 17)

. . (17-1)! = -1 (mrd 17) Stence Wilson's thom

```
@ S.T. (6!+1) in divinible by 7.
Sol: By Wilson's themen
     ex 8 is prime, then (1-1) = - (mod 1)
                     ie (8-1)1+1 = 0 (med 1)
   Let I in prime then (I-1)! = + (orrd)
                     61 = 4 (moral 7)
                     6!+1 = 0 (mrd7)
     - (61+1) in divinible by 7
 @ P.T. (12! +1) in divinible by 12.
 @ & r in grime number then s. T. Est
        2(P-3) 1+1 is a multiple of P.
SI. By wilson's theorem wehave
     of 8 is prime then (P-D) = -1 (mod r)
                         (P-D! +1 = 0 (med 1)
          .. (P-3)! (1-2)(P-3)+1 = 0 (mrd P)
                      (-: (1-1); = (1-1)(1-2)(1-3)--32
                                =(1-1/(1-2)(1-3))
    .. (b-5)(b-1) (b-3); +1 = 0 (mex 8)
     ( PL 3P+2)(P-3) 1 + 1=0 (med P)
     (P23P)(P-3)! + 2 (P-3)!+1 = of mrd 8)
      But (P-3P) (P-3) = 0 (mod 8)
         -. 8(B-3)1+1=0(med 1)
        - 2 (P-3)! +1 in a mulbyle of Y
```

Dofn: An integers in the form Fn = 2+1 are Called Fermat's numbers. Where n>0.

Examples: Fermat's numbers. Fn = 22+1

For n=0, Fo = 2+1 = 2+1 = 3.

N=1, F, = 22+1 = 4+1 = 5

N= 2, F2 = 22+1 = 24+1= 16+1=17

N=7, F3 = 2 +1 = 2 +1 = 256+1=257

N=4, F4=22+1=65537.

proposition: prove that the Fermat's number Fs = 2 +1 in divisible by 641

SII: We with to show that 641 F.

ie 641 in a divinor of For For in a

divinible by 641

Let 641 = 5x2+1 or 641 = 2+54 (641-1) = 5x27 or (641-54) = 24.

Let F== 2+1 = 2 +1 = 2 + 2 +1 But 24 = (641-54)

F5-= (641-54) 2 +1

F5 = 641. 28 54 228+1

F5= 641 2 - (5.27)4+1

@ ED DO DO Planing of (NEW 12 M (March) But 5x2 = (641-1) F5 = 641 228 (5.27) 41 F5 = 641.22 - (641-1)4+1 But (a+b) 4= a4+4a3b+4(4-1)ab+4(4-1)(4-4)ab+b4 (a-b) 4= a4-4a3b+6a2b-4ab3+64 31 (641-1) 4=(641) 4-4(641) +6(641) -4(641) +1. (641-1)4 = (641)4-4(641)3+6(641)-4(641)+1 FG = 641 2 - (641-1)4+1 Fr = 641 x 2 - [(640 - 4(641) + 6(640 - 4(640 + 1) + 1 F5 = 641×228 - (641) 4 4(641) 3 - 6 (641) 4 4(641) -1 +1 F = 641×228 - (641) + 4 (641) - 6 (641) + 4 (641) F5 = 641 [2 = (640) +4(641) - 6(640+4)

F_= 641 K -V KEZ Where K = (2-(641) + 4 (641) - 6(641) + 6 (641) - 6 (641) + 6 (641) - 6 (641) + 6 (641) - 6 (

. Fs in divinible by 641

-	
Name of the last	
	III BSC N Semester
	Mathematics pass Cas
	TII BSC V Semesty Mathematics paper - 6.2a Mumber Theory Unit: - 3 Mobius and Greatest integer function
	Mumber Theory
	Unit: - 3 Mobius and Createst integer Lunction

Unit: -3 The Mobius inversion formula. Mobius - function The Mobius function it is Arithematic Junction (on Number theautic function its domain is N and its songe in 7-1,0,13 > 3-1,0,13 is defined as o if P2/n for some prime Pi are distinct frome (or n is square fee) Note: M (pk) = h=0 K=1 JKZ2 11(1)=1 カーノ 2=21, Y=1. 4(2)-(-1)=-1) 11(2) =-1 n=2 n=3 M(3) =-1 :: 4=22, 28/L) n=4 u(4)=0 u(5) = -1 2=5 (: 6= 2 x3' , T=2) - M(W=) n=6 M(6)=1 n=7 (9) = -1 (18=9+2=3+2,3/18) m=18 M(18)=0 (dx 5=20, 22/20) n=20 Ul20)=0 130=2 ×3×5 n=30 4(30)=(-1)3 9 = 111 = 55

Theorem: 01 Prove that the function it is a Multiplicative function. Multiplicative

Proof Let u is a Mobius function

il. u(n) = 2 1 if n=1

o if p2/n for some prime p

(1-1) i n= P.P2. Prove dist

prime

prime we have to prove that Memny = Mem). Men) where m & n are lelatively frime Case: i - # m=1 n=1 M(m) = M(1)=1 11(n) = 11(n) =1 Itun u(m). u(n)=1.1=1 mn=1.1=1 mn = 1.1 = 1 M(mn) = A(1) = 1-thy u(mn) = u(m), u(n) if p^2/mn then p^2/m (or) p^2/n since p^2/mn re(mn) = 0

if p^2/m then e(m) = 0 and also e(m) re(m) = 0 -U(m) -U(n) = 0 : Ulmn) = Ulm). Uln) Care iii het eus assume mand nau gran freu Integers

Say m= P, P2 ... Pr min7=+6" min1=+1)?

primes P; and Q; being distinctthen . Pr. 9,9, 21) = (-1) 7 (-1) 8 M (mn)= M(m), M(n). Henre u a a Multiplication function Note For Such tre integer n21

Suld) = 21 if n=1

Alm 20 iff n>1 when d sums
through tre direson of n 1 Illustrate the value & uld) for n=10 2 = 10 The all positive divisory of 10 are : - the desired sum 2 Su(d) = U(1) + U(2) + U(5) + U(10) = 0

Note. For each the integer m21

Sell - } 1 if n=1

In Suld - } 0 if n>1 when I sure

Through the olivious of n 1. Masteale - le value & Mal for no 10 Sol1 n=10 The all Fostive divisors of 10 are 1,2,5,10 = The decreed sum is Sucd) = M(1) + M(2) + M(5) + M(10) Allo = 1-1-1+1 = 0 thoum # nz1 -then u(d) = [1] = 2 1 2] n=1 proof: The tormula is clearly true for n=1.

Assume, then that nx1 and weither

n= P, 1. P, 2. . P, 1.

In this sum Su (d) the only mon sero = lenne

dln Come from d=1 and

from those divisors of n which are

product of distinct primes their

Su(d) = u(1) + u(P) + u(P) + . u(P) + . u(P, P) +

dln

dln

there exists of n which are + M(PK-1 PK)+ + M(PK Px- Pc) din =0++ gk = 1+(K)(+1)+(K)(+1)+(K)(-1)K $= (1-1)^{k} = 0$

Mobius Inversion - penula: het Fond of be two number through - functions related by the formula

F(n) - & f(d) then fin) = sucd). F(m) = su(n). Fld) 5000 f(n) = Su(a) + (n) = s (u(d) s - f(e)) = 5 (& M(d), +(c)) - 0 (5. F(n) = 5-1/d)

aln (cl(n)) - 0 (7. F(n)) It is resified that that din and diffe .: & (& M(d) fro) = Si (& M(d). f(1))

allo (offola) cito (alpho) = & (f(c). & M(a))->0 we know that for the The intege nz)

Suld) - 21 f n=1

dIn 20 f n>1 the sum & M(d) must Nonseh Encept when n/c=1 thus from (3) = 2 +(0=) = -fec)

0	show that In (& M(d). +(0)) = & (& +(0). 11)
4	din(c/2)) c/10/d/(10/c)
	-for n=10
0.1	
501	7 = 10
	The all positive divisors of 10 are d= 1, 2, 5, 10.
	Notes
	if d=1 +then cl (10/d) ie. C=1,2,5,10 if d=2 +then cl (0/d) ie C=1,5. if d=5 +then cl (0/d) ie C=1,5.
	il d=2 -then el (old) ie c-15
	21 d=5 -tun clhola) ie c-1.2
	ij d=10 then c/(10/4) ie (-1
	A CONTRACTOR OF THE PROPERTY O
	:. & (& M(d) f(c) d(o) (c)(0/d)
	= M(1) [+(1)++(s)++(s)++(10)]+
	M(2) [+(1)+ +(5)] + M(5) [+(1)+ +(2)]
	+4(10) [+(1))
	= \$(1) [u(1) + u(1) + u(5) + u(1)
	+ +(2) [u(1)+u(5)] + fae)
	+ f(2) [u(1) + u(5)] + f(10) + f(5) [u(1) + u(2)] + f(10)[u(1)].
	- 5 10 10
	= & (s f(c). zu (d))

For Each tre Integer n ST M(n) HEn+1) M(n+28 M(n+3)=0. Let u(n) u(n+1) u(n+2) u(n+3) = u(n (n+1) (n+2) (n+3)) (: 11 is Multiplied Now for such value of 'n' three will be 2 even and 2 odd no in the fectors of 2 10 the product 4: u(22)=0. .. U(n). u(n+1) U(n+2). U(n+3)=0 Here It proof Q of 'n is a fre Integer Fings then Proof it het n=3 3 Han & M(K)=M(1!)+M(2!) + M(S!) The result es frue for n=m, thu The desult is also true for n=m+1) EM(K!) = 3 M(K!) + M(m+1)!) : Suck)=1 flow the forest.

Note: Let n= P, K, P, K2 P, K be the gime factorization of in 41 f is a not moutifully licative function and 81 not country industrially Equal to Zeno thin Suld +(a) = (1-f(P)) (1-f(P)). \$\frac{1}{21 = P, \frac{1}{2}, p, \frac{1}{2}} = \frac{1}{2} \frac Proof Let f(n)= 1 € m(a) +(a) = € m(a) [: f(m) = 1] Sina I's a Multiplicative function i.e 1 = 1 . 1 f(mn) = f(m). f(n) $\frac{\sum u(a) f(a) = (1 - f(P_1)) (1 - f(P_2))}{(1 - f(P_6))} = \frac{1 - \frac{1}{P_1} (1 - \frac{1}{P_2}) - \frac{1 - \frac{1}{P_2}}{P_2}}{(1 - \frac{1}{P_2}) - \frac{1 - \frac{1}{P_2}}{P_2}}$ Suld) = = (1-1)(1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) :. & M(d) - (1-1) (1-1) - (1-1) Here the frost.

Scanned by CamScanner

Greatest integer function (0) step functions J: x= 7-3 -35 x 4-2 -2 < x <-1 -1 5x20 05201 D 15 262 2 < x < 3 3 5 2 < 4 Any real Number 'x' can be welten on x=[x]+0, where 0 4 0 41. 2 + [x+0] 3.2 = [3.2] +0 3.2 = 3+0 , (0=0 For an asheltaly seal number x, then the Largest- Putiger less than (on) equal for In

Called the Putiger fort of x (on Greatest Fiderofs

- function (on Bracket function. It will be denoted by [2]

Example: [3] = 3, (-4) = -4, [3.7] = 3.

[-42] = 5, [-3/2] = -2, (52) = 1

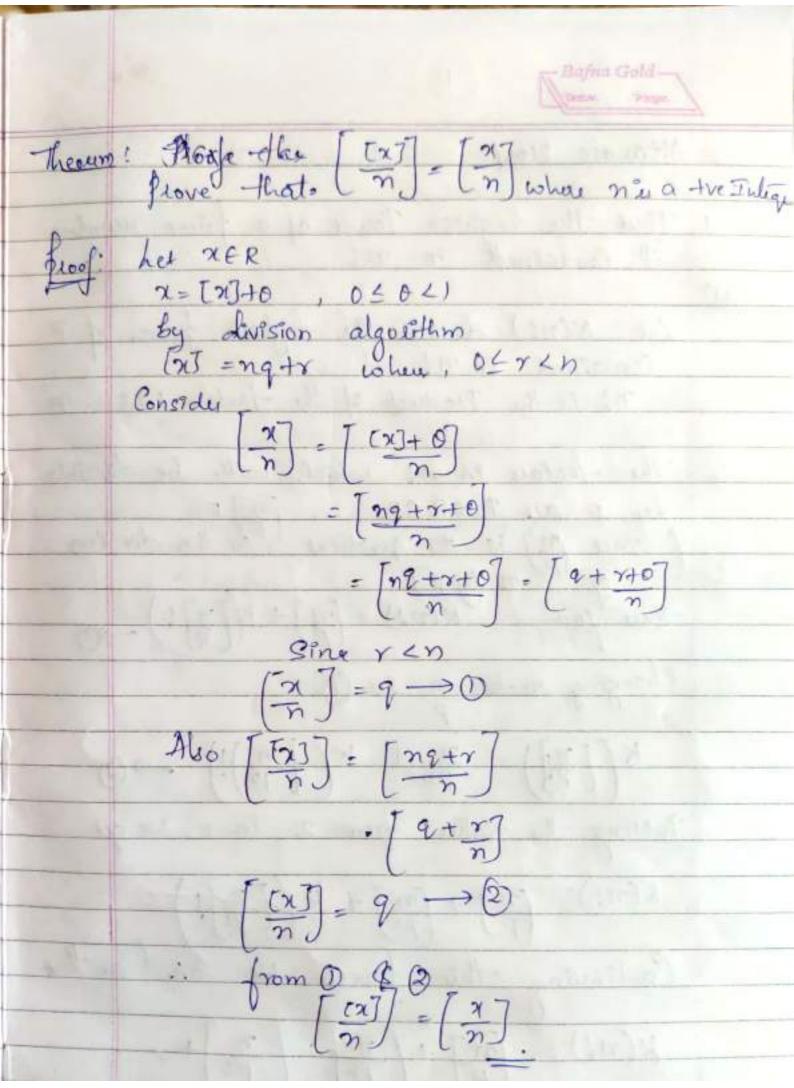
Note 1) [X] is the largest integer SX

2) if a and b are positive integer such that

a = 69+9 where OSA Cb then

g = 9+8 where OSA Cl : [=]=q is the quotient in the division of a by b Thrown Prove that the greatest Pritiger

function Satisfies the properties


[x]+[-x]=0 (on-1, according as x

is an integer or not

ie [x]+[-x]=2 0, if x & an integer

-1 . other wase. Proof.

a) het x be my head no. x= [x]+0 1 0 x 0 x 1 Suppose x EZ then 0=0 7=[x] -> 0 -x=[-x]->0 D+0= [x]+(-x] = 2-2 =0 1) x in not an enteger X = [x]+0; 0x0 </ -x - [-x]+01; 0x0'L1 Adding X + (-x) = [x] + 0 + [-x] + 0' But 0< (0+0) < 2 and 0+0=-3(x]+Ex) -2< ((x)+(x) 3 <0 : (x] + (-x) is an Pritique So [x]+[-x]=-1

frime the superior of the higher bower of 9-that divide of I because In I = o for ptzn Among the first on positive ritige. Those divisible by Paus P, 2P, 3P -tp. ならられ、 They there are Exactly ["Ip] multiples of P occurring in the product that deprin (Since [n] is the quotiens in the :. k(n!)= n + k(p)!)-0 changing on to n e O we K[m]') - [m] + K([m]!) Substitute @ in () weight $K(n!) = \binom{n}{p} + \binom{n}{p^2} + K\left(\frac{n}{p^2}\right)$ Continuing this process, we can prove that

K(m1) - m + m + [m] + [ps] + ---

Alterate proof: 1. Find the highest Power of a frime number 5017 Let K(n) denote the highest power of P n! Ps-the Product of the factors 1,2,3. n The -factors in on! which will be divisible ty p au P, 2P, 3P ... [m] p.

(Since [m] is the quotient [m] the diversory

-there for K(n) = [m] + K[m] 1) Changing moto n in 1 $K\left(\left[\frac{n}{p!}\right]\right) = \frac{n}{p_2} + K\left(\left[\frac{n}{p}\right]!\right) \longrightarrow \emptyset$ Jutting the Value from 2 in , we get $K(n!) = {n \choose p} + {n \choose p} + K\left(\left[\frac{n}{p_2}\right]!\right)$ Continuing this process we for prove that $K(n!) = \frac{m}{p} + \frac{n}{p^2} + \frac{n}{p^2}$ after a finite number of Steps

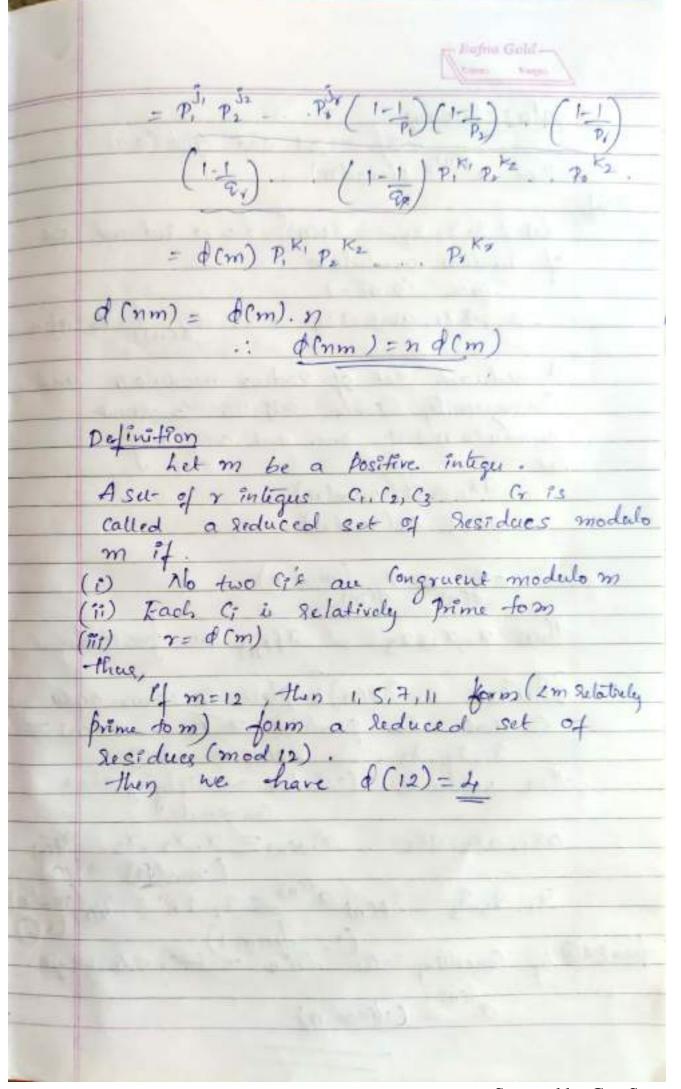
Find the highest former of 3 which is = [33.33]+[11.11]+(3.7]+(1.2]+[0.4] = 33+11+3 +1 to 8. Find the highest former of 5 Twich is Condard 1000! 7 - [1000] + [1000] + [1000] + [1000] + [1000] + [1000] = 200 + 40+8+1 = 249 : 249 dividy 1000! Find the highest force of 7 dividing 2000! k) = 2000 + 2000 + 2000 + 2000 75 75 ing yourself 1. Find the highest fower of 7 which is Contained in 50! Aug: 8.

Prod the highest fower of 3. Levi ding 500!

Mrs: 247

Falux pli function or indicator (on. Totient JunetPon Let m be any positive Integer - he set of all positive integer less than m and Relatively frime to m is denoted by dem) is it is called as kuleis function of Euleis flir function. Example 1. Consider m=12. the positive integers less than 12 and relatively from to 12 all 1,5,7, and 11 : d(12)=4 2. If m=7 (a frime number) then the Positive integer less team 7 and selatively Prime to 7 are 1,2,3,4,56, there fore \$ (4)=6 2. In General if Pi Prime number then then 1,2,3. Pro are less than P and Co-prime to P and are P-1 in total Theorem: If on is any integer, then d(n)=n-1. ift n & frme Number. roof het n is a frime, dow & the no of integer on and (mn)=1, when min since 'n' is a prime, then of (n) = n-1, Convertey Let &(n)=n-1,-then n is a prince number contrary, in a a composite number d' 1: 11 des la composite no tun 7 adiviou 1: 12den, tun (n) (n-2) but O(n)= n-1, ... nia frince Hene la prost.

Throum: If Pin a prime and two the froof: The Humber of Integer from 1-to


Ph which are not so prime to pt

are P, 2P, 2P ... (Pk")P au not co-prime to pk are pk-1. * of (PK) = Number of integer coprimes ie. $\phi(pk) = pk - pk - 1$ $= pk \left(1 - \frac{1}{p}\right)$ Noti If a and b an Co-prime to Each other then \$(ab) - \$(a) . \$(b) (: \$\delta \text{AMF})\$ Eg: \$d(12) = \$(4+3) = \$(4).\$d(3) \$(12) f \$(6) + \$d(2) 6 and 2 an mot Co-primes. Lemma Given integer a,b, C ged (a,b, C)=1 Thrown of the integer not has there the prime federization no pike poke peks . Pike $\phi(n) = (p_{1}^{k_{1}} p_{1}^{k_{2}}) (p_{2}^{k_{2}} - p_{2}^{k_{2}-1}) \cdot (p_{1}^{k_{1}} - p_{3}^{k_{3}})$ $\phi(n) = m(1 - 1/p_{1}) (1 - 1/p_{2}) \cdot (1 - 1/p_{1})$

Let $n = P_{i}^{k_{1}} p_{i}^{k_{2}} \dots p_{i}^{k_{k_{i}}}$ Let $d(n) = d(p_{i}^{k_{1}} p_{i}^{k_{2}} \dots p_{i}^{k_{i}})$ $= d(p_{i}^{k_{1}}) d(p_{i}^{k_{2}}) \dots d(p_{i}^{k_{i}})$ $= (p_{i}^{k_{1}} - p_{i}^{k_{i+1}}) (p_{i}^{k_{2}} - p_{i}^{k_{2}}) \dots (p_{i}^{k_{i}} - p_{i}^{k_{i+1}})$ $= p_{i}^{k_{i}} (1 - 1) p_{i}^{k_{2}} (1 - 1) \dots p_{i}^{k_{i}} (1 - 1) \dots p_{i}^{k_{i}} (1 - 1)$ $= p_{i}^{k_{i}} (1 - 1) p_{i}^{k_{2}} (1 - 1) \dots p_{i}^{k_{i}} (1 - 1) \dots p_{i}^{k_{i}} (1 - 1)$ Pray $d(n) = m \left(1 - \frac{1}{p_1}\right)\left(1 - \frac{1}{p_2}\right) - \left(1 - \frac{1}{p_1}\right)$ O Calculate of (360), of (5040) and of (72000)

Sold 360 = 23225 = Pix Px 2. Pixs d(n) = d(360) = n (1-1/p) (1-1/p2) (1-1/p2) = 360 (b) (26) (41K) \$(260) = 96 similarly & (5040) 59(72000) Try yourself. (Verify that the Equality of holds where n = 5186 n = 5186 = 2.2593 (5186) = 5186 (1-1.)(1-1) = 5186(1)(2592) (5186) = 5186 (1-1.)(1-1) = 5186(1)(2592)9711 = 5186 + 1 = 5187 = 3,7,13,19B(5187) = 5187 (2) (6) (12) (18) = 2592 n+2 = 5186+2=5188 = 2 = 1297 f(5188) = 5188 (16) (1296) = 2592 = 0 f(5) = 50 f(5) = 40 f(5) = 40 f(5) = 40 f(5) = 40From O. 0 \$ 8

(3)	Establish the association of the
do	A L
	I n is an even lutique then d (2n) = 2d(n)
Broot	27 % At 00 % OVER
H	a Kipte akr
1 49	97 b. q_{f} n z_{i} even $ y_{i} = y_{i}^{k_{1}} \cdot p_{i}^{k_{2}} \cdot p_{i}^{k_{1}} \cdot p_{i}^{k_{2}} \cdot p_{i}^{k_{1}} $ $ y_{i} = y_{i}^{k_{1}+1} \cdot p_{i}^{k_{2}} \cdot p_{i}^{k_{2}+1} $
	$\frac{1}{2} \left(\frac{2n}{2} \right) = 2n \left(\frac{1-1}{2} \right) \left(\frac{1-1}{2} \right) \left(\frac{1-1}{2} \right) \left(\frac{1-1}{2} \right) = 2n \left(\frac{1-1}{2} \right) = 2n \left(\frac{1-1}{2} \right) \left(\frac{1-1}{2} \right) = 2n \left(\frac{1-1}{2} \right$
	$d(2n) = n\left(\frac{1-1}{P_2}\right)\left(\frac{1-1}{P_2}\right) \cdot \left(\frac{1-1}{P_2}\right)$ And
1	And -30
	$2 d(n) = 2 n \left(\frac{1-1}{2}\right) \left(\frac{1-1}{P_2}\right) \left(\frac{1-1}{P_3}\right) - \left(\frac{1-1}{P_3}\right)$
	$2 d(n) = n \left(\frac{1-1}{P_2} \right) \left(\frac{1-1}{P_3} \right) \cdot \left(\frac{1-1}{P_4} \right) = 0$
	diam 0 8 0 week
	from 0 \$ @ weget-
(d)	If Every frame that divides nalso divides m, Establish that offmm)= 47.0 (m)
Proof	$\mu_{n} = \mu_{n} = \mu_{n$
1	Let P. P. P. De be all 11 1-
	n that divide m
	n that divide on Let n= p, k, p, k, p, k, p, k, m, e,
	m= (P,J. P, 2
	So that 27 7 Pj
243	So that $27 + p_j$ $\therefore nm = (p_j^{K_1+j_1}, p_j^{K_2+j_2}, p_j^{K_2+j_3}) \cdot (p_j^{K_2+j_3}) \cdot (p_j^{K$
	d (nm) = (P, Ki+j, P, Ki+i, P, Kini, 4,m, 9,me).
104.4	(1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1)

Luleis-theorem

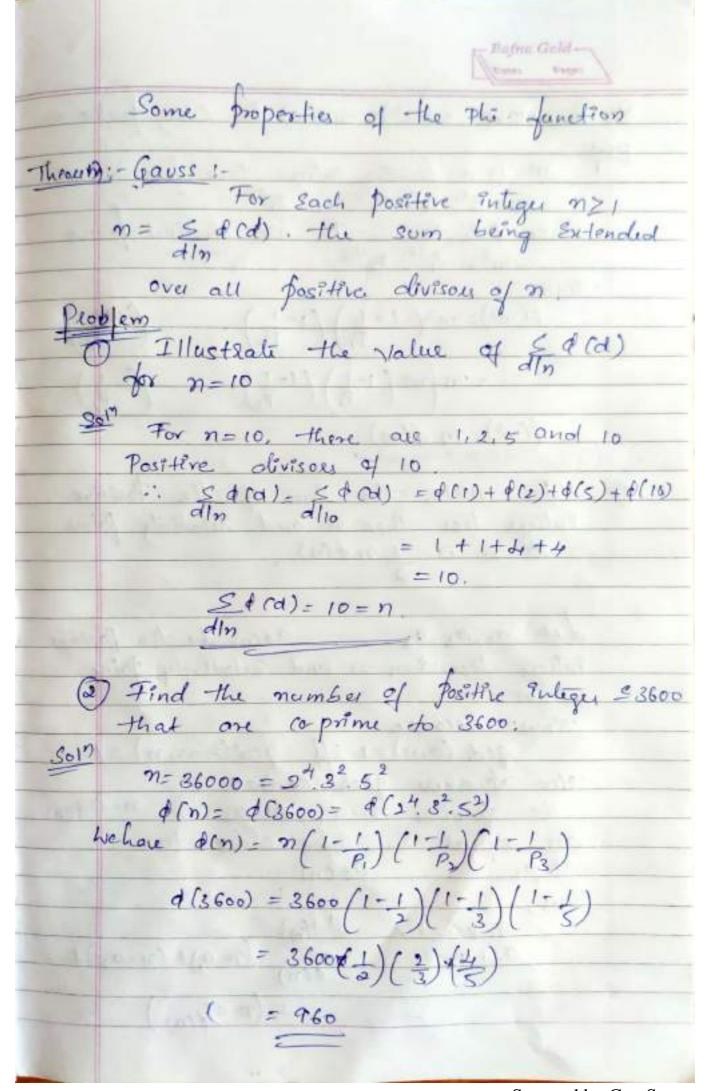
If n > 1 and gcd (a,n) = 1

then a (m) = 1 (mod n) Proof: Let 3 91,92,93. . 9 cm) } be a reduced set of Residuar modulon Since (a,n) = 1 Since (a,n)=1 -: 3an, an, an, an, and is also a Reduced Set of Reduce modulon and Consequently Each ari is Congravent modulon to one and only original ari = xi(mooln) an = 22 (modn) $a\eta_{(n)} \equiv \chi_{(m)} \pmod{n}$ then x, x2, x3. . Afin are poc cisoley 38,182 - . 90m) 3 place in some orde So that the product $x_1 x_2 ... x(n) = S_1. S_2 ... S_3 ... So(n) - > 0$ then we have (: by multiplying above as, as, as, as, as and $(x_1, x_2, x_3, x_4, x_5)$ Jum 080 by Concelling the tum on both side weget aden) = 1 (mod n)

(Since Sach 77 when ?= 1,2 - d(m)) 21 Relatively Prime form. - therefore - their

Product - 7, x2. x3. xorm) is also relatively

prime to m. So (an celling x, x2. x4(m)


from both Stole of egn weget

atim) = 1 (mod n) Cosollary. Funat's -thrown as a Corollary of Euler's -thrown. If in Euler's -thrown we take m= P., when P is prime, then d(m) = d(P) = P-1 The Result of a d(P) = 1 (mod P) takes
The form of = 1 (mod P) which is Ferm at & theorem) Find the unit oligite of 3100 by means of Euler's theorem (5) Som The god (10,3) = 1

by Euler's Human d(10)

3 = ((mod 10)) Q(10) = 4 34 = 1(mod 10) (34)25 = 1 (mod 10) 3100 = 1 (mod 10) :. The buit degit of 3100 is 1

0	use Eule's -thrown to satablish the for any integer a, as = a (mod 1729)
1001	$a^{12} \equiv 1 \pmod{7} \implies a^{36} \equiv 1 \pmod{7}$ $a^{12} \equiv 1 \pmod{9} \implies a^{36} \equiv 1 \pmod{13}$ $a^{16} \equiv 1 \pmod{19} \implies a^{36} \equiv 1 \pmod{19}$
142	: a36 = 1 (mod 7.13.19)
	$\Rightarrow a^{37} \equiv a \pmod{9.13.19} $ (: by multipling don 88) $\Rightarrow a^{37} \equiv a \pmod{1729}$
2,	(1) for any integer a, (1) a33 = a (mod 4080) (: 4080 = 15.16.4)
	(11) a13 = a(mod 2730) (2730 = 2.3 5.7.13

Rove that $d(m^2) = m f(m)$ for Every fastilise in press of m is a fostilize integer. There fore m= pto p to		
proof m is a fositive integer. there former m= P, k, p, ks p, ks. when P, P, P2. Pr are distinct frimer in many - m² = P, 2k, p, 2ks. - Minace P(m²) = m² (1-1) (1-1) - m (m (1-1) (1-1) - m (m (1-1) (1-1) - m (m²) = m f(m) - m (m)	Q	De to the DC 2) DC Son Sweet Brother
there $(1, 1_2, 1_2, 1_1, 1_1, 1_2, 1_2$		
there The some of the positive integer less than on and relatively prime to m. The some of the fositive integer less than or and relatively prime to m. The some of the fositive integer less than or and relatively prime to m. The some of the fositive integer less than or and relatively prime to m. The some of the fositive integer less than or and relatively prime to m. The some of the fositive integer less than or and relatively prime to m. The standard good (an) = 1 iff god (n-a, n) = 1 The standard good (an) and a selectively or and are equal in some order to a form order to a form or and they. They are a form of many they are a form or and they.	PLO	1 m 2 l 1 - + - 11 l
thence \[\begin{align*} & m^2 = \beta_1^{2k_1} \beta_2^{2k_2} \\ & \text{Plane} \\		m is a positive integer. There fore
thence \[\begin{align*} & m^2 = \beta_1^{2k_1} \beta_2^{2k_2} \\ & \text{Plane} \\		m = P,
Three P(m2)=m2(1-1) (1-1) = m (m (1-1) (1-1) = m (m (1) (2000	when 9, 72, P2. It are distinct primes
P(m²)=m²(1-1) (1-1) (1-1) = m (m (1-1) (1-1) (1-1) = m (m (1-1) (1-1) (1-1) = m (m (1) (1-1) = m		$m^2 = p_1 \cdots p_2 \cdots p_n$
em (m (1-1) (1-1) (1-1) Q For m>1, the sum of the Positive integer less than on and relativity Prime to n is 1 n d(n). Let a, a, a, a on be the positive integer less than on and relatively prime to m. Now because ged (on) = 1 iff ged (n-a, n) = 1 The Number gest (oan) = 1 The Number n-a, on-a, n-aden are equal in some order to a, a, a on they they,		Then co
Tor n>1, the sum of the Positive interess less than on and Relativity Prime to n is 1 no (n). Let a, a, a, a, a con be the positive integer less than on and Relatively prime to n. Now because god (a,n)=1 iff god (n-a,n)=1 The Number n-a, n-a, n-aden are equal in some order to a, a, no aden they, They, a, +a, + = Ada, a, n-a, +a, +a, +a, +a, +a, +a, +a, +a, +a, +		$P(m^2) = m^2 \left(\frac{1 - 1}{P_1} \right) \left(\frac{1 - 1}{P_2} \right) \cdot \left(\frac{1 - 1}{P_2} \right)$
Tor n>1, the sum of the Positive interess less than on and Relativity Prime to n is 1 nd(n). Let a, a, a, a, a con be the positive integes less than on and Relatively prime to n. Now because god (a,n)=1 iff god (n-a,n)=1 The Number god (ann)=1 The Number n-a, n-a, n-adon are equal in some order to a,		$= m \cdot \left(m \left(1 - \frac{1}{p_i}\right) \left(1 - \frac{1}{p_2}\right) - \cdot \cdot \left(1 - \frac{1}{p_i}\right)\right)$
For n>1, the sum of the Positive integer less than on and Relativity Prime to n is 1 nd(n). Let a, az, az		$q(m^2)=m q(m)$
integer less than on and Relativity Prime to n is 1 nd(n). Let a, a, a, a on be the positive integer less than on and Relatively prime to n. Now because ged (a,n)=1 iff ged (n-a,n)=1 then Number ged (can)=+ The Number n-a, on-a, n-aden are equal in some order to a, a, ap(n) they a, ract = Adm a, n-a, + (n-a) + (n-a) +		
integer less than on and Relativity Prime to n is 1 nd(n). Let a, a, a, a, a on be the positive integer less than on and Relatively prime to n. Now because ged (a,n)=1 iff ged (n-a,n)=1 The Number gest (can)=+ The Number m-a, on-a, n-aden are equal in some order to a, a, ap (n) they, a, ract = Adm) a, n-a, + (n-a) + (n-a) + and (n-a) +	0	For n>1. the sum of the Positive
Let a, a, a, a, a a con be the positive integer less than on and selectively prime to on. Now because ged (a,n) = 1 iff ged (n-a,n) = 1 Then Number ged (oan) = t The Number m-a, m-a, m-a, m-aden are equal in some order to a, a,	.71	Integer less than on and Relativile Prime
Let a, a, a, a, a a con be the positive integer less than on and selectively prime to on. Now because ged (a,n) = 1 iff ged (n-a,n) = 1 The Number ged (oan) = t The Number m-a, m-a, m-a, m-aden are equal in some ender to a, a,		to n is (notin)
inliger less than m and Relatively Prine to m. Now because ged (ain) = 1 iff ged (n-a, n) = 1 The Number ged (can) = 1 The Number m-a, m-a, m-aden are equal in some order to a, a, ap (n) they, a, +a++ - Adm) a, +a++ - Adm) a, +a++ - Adm)		2
inliger less than m and Relatively Prine to m. Now because ged (ain) = 1 iff ged (n-a, n) = 1 The Number ged (can) = 1 The Number m-a, m-a, m-aden are equal in some order to a, a, ap (n) they, a, +a++ - Adm) a, +a++ - Adm) a, +a++ - Adm)		
integer less than m and Relatively Prine to m. Now because ged (ain) = 1 iff ged (n-a, n) = 1 The Number ged (can) = 1 The Number m-a, m-a, m-aden are equal in some order to a, a, ap (n) they, a, +a++ 2 Adm) a, +a++ 2 Adm) a, +a++ 2 Adm)		Let a, az, az a on be the positive
Now because ged (a,n)=1 iff ged (n-a,n)=1 The Number ged (can)=+ The Number n-a, m-a, n-a, n-aden are equal in some order to a, a, ap (n) they a, +ax+ = Adm a, n-a,+ (n-a)+ (n-a)+		integer less than on and selatively tring
ged (ain) = 1 iff ged (n-a, n) = 1 The Number n-a, m-a, n-a, n-aden are equal in some order to a, a, apen) they a, +ax+ = 9 dbn a, +ax+ = 9 dbn a, +ax+ = 9 dbn	11/2	
ged (ain) = 1 iff ged (n-a, n) = 1 The Number n-a, m-a, n-a, n-aden are equal in some order to a, a, apen) they a, +ax+ = 9 dbn a, +ax+ = 9 dbn a, +ax+ = 9 dbn		Now because
The Nember good (can)=1 The Number $n-a_1$, $n-a_2$. $n-a_1$ and $n-a_1$		
The Number $n-a_1$, $n-a_2$. $n-a_{den}$ are Equal in some order to $a_1, a_2, \dots a_{den}$ they $a_1+a_2+\dots a_{den}$ $a_1+a_2+\dots a_{den}$ $a_1+a_2+\dots a_{den}$		The Newsber 9000 Convoca
are equal in some order to $ \begin{array}{cccc} Q_1,Q_2, & & & & & & & & & & & \\ Q_1+Q_2+ & & & & & & & & & & \\ Q_1+Q_2+ & & & & & & & & & & & \\ Q_1+Q_2+ & & & & & & & & & & & \\ Q_1+Q_2+ & & & & & & & & & & & \\ Q_1+Q_2+ & & & & & & & & & & & \\ \end{array} $		The Number n-a, n-a, n-aden
$a_1, a_2, \dots a_p(n)$ they, $a_1 + a_2 + \dots + a_{(n)} = (n-a_1) + (n-a_2) + \dots$		
they, $a_1 + a_2 + 2 \cdot 3 \cdot 6n$		$a_1 a_2 \ldots a_{\mathfrak{p}(n)}$
$a_1 + a_2 + 2 da_1$ $a_1 + a_2 + 2 da_1$ $a(n) = (n-a_1) + (n-a_2) + (n-$		they.
$a_1 + a_2 + \cdots - a_{(n)} = (n-a_1) + (n-a_2) + \cdots + (n-a_{(n)})$		91. + 9c+ 2 - 9d60)
+ (n-a (n))		a, + a2 + - a (n-a)+ (n-a2)+
(10)		+ (n-a den)
		((n))

a, faz + f. (+ a scn) = (n-a,) + (n-a,) + ... (n-a+m) = d(n).n - (a, +a, ... do(n)) Hence 2(a, +a, ... aoin) = n.d(n) $=\frac{1}{2}nd(n)$ (on). 8. If n>1, Prove that the som of domi and Selatively Prime to n is not (n) 5017 Id- a, a, a, adin) be the Posttice entegers less than and relatively prime ton we know that if a is an integer less than n and frime ton. then (n-a) is also on integer kn and prime ton there fore f(n) Integers les thon n & prime ton acc of type of affect. hel- the sum of there o(n) Priteges be denoted by S -tun S= 9,+02+03+ ...+(m-92)+(m-02)+(m-91) Writing the terms in severae and S: 4n-a,)+(n-a)+(n-a)- - + a2+a2+1 Addie, (1) & (1) we have DS = n+n+n+ . + & (n) =) 85 = ond(n) S= 1 n & (n) ## Au the Best ##