

Sree Siddaganga Education Society ®Estd: 1966-67

Sree Siddaganga College of

Arts Science & Commerce

 Affiliated to Tumkur University Admission for Both Boys & Girls

A College with a difference-NAAC B ++

B.H.Road, Tumkur-572102.Ph:0816-2278569, 8277338148

Website: - www.sscasc.in e-mail:-principal.sscasc@gmail.com

STUDY MATERIAL

 Subject:-Python Programming

 DEPARTMENT OF COMPUTER SCIENCE

6th Semester BSc

mailto:principal.sscasc@gmail.com

VI Sem BSc- PMCs SSCASC@Tumkur

SP_Python Programming 2

Chapter-1

Python Programming Basics

Introduction to Python: Python is an easy to learn, powerful programming language. It

combines the features of C and JAVA. It has efficient high-level data structures and a simple but

effective approach to object-oriented programming. Python’s elegant syntax and dynamic

typing, together with its interpreted nature, make it an ideal language for scripting and rapid

application development in many areas on most platforms.

Python is open source software, which means anybody can freely download it from

www.python.org and use it to develop programs. Its source code can be accessed and modified

as required in the projects.

Features of python:

1. Simple: Python is a simple and minimalistic language. Reading a good Python program feels

almost like reading English language. It means more clarity and less stress on understanding

the syntax of the language. It allows you to concentrate on the solution to the problem rather

than the language itself.

2. Easy to learn: Python uses very few keywords. Python has an extraordinarily simple syntax

and simple program structure.

3. Open Source: There is no need to pay for Python software. Python is FLOSS (Free/Library

and Open Source Software). It can be free downloaded from www.python.org website. Its

source can be read, modified and used in programs as desired by the programmers.

4. High level language: When you write programs in Python, you never need to bother about
the low-level details such as managing the memory used by your program, etc.

5. Dynamically typed: Python provides IntelliSense. IntelliSense to make writing your code
easier and more error-free. IntelliSense option includes statement completion, which provides
quick access to valid member function or variables, including global, via the member list.

Selecting from the list inserts the member into your code.

6. Portable: Due to its open-source nature, Python has been ported to (i.e. changed to make it
work on) many platforms. All your Python programs can work on any of these platforms without
requiring any changes at all if you are careful enough to avoid any system-dependent features.

7. Platform independent: When a Python program is compiled using a Python compiler, it
generates byte code. Python’s byte code represents a f ixed set of instructions that run on all
operating systems and hardware. Using a Python Virtual Machine (PVM), anybody can run
these byte code instructions on any computer system. Hence, Python programs are not
dependent on any specific operating system.

8. Procedure and Object Oriented: Python supports procedure-oriented programming as

well as object-oriented programming. In procedure-oriented languages, the program is built
around procedures or functions which are nothing but reusable pieces of programs. In object-
oriented languages, the program is built around objects which combine data and functionality.

http://www.python.org/
http://www.python.org/

VI Sem BSc- PMCs SSCASC@Tumkur

SP_Python Programming 3

Python has a very powerful but simplistic way of doing OOP, especially when compared to big
languages like C++ or Java.

9. Interpreted: Python converts the source code into an intermediate form called byte codes
and then translates this into the native language of your computer using PVM(Is s interpreter)
and then runs it.

10. Extensible: The programs or function written in C / C++ can be integrated into Python an
executed using PVM. There is another flavor of Python where programs from other languages

can be integrated into Python.

11. Embeddable: You can embed Python within your C/C++ programs to give scripting

capabilities for your program’s users.

12. Extensive Libraries: The Python Standard Library is huge indeed. It can help you do

various things involving regular expressions, documentation generation, unit testing, threading,
databases, web browsers, CGI, FTP, email, XML, XML-RPC, HTML, WAV files, cryptography, GUI
(graphical user interfaces), and other system-dependent stuff. Remember, all this is always

available wherever Python is installed. This is called the Batteries Included philosophy of
Python.
Some interesting batteries or packages are:

 orgparse is a package that represents command-line parsing library

 botois Amazon web services library
 cherryPhy is an object-oriented HTTP frame work
 cryptography offers cryptographic techniques for the programmers.
 fiona reads and writes big data files.
 numpy is package for processing arrays of single or multidimensional type.
 w3lib is a library of web related functions.

 mysql-connector-pythonis is a driver written in Python to connect to MySQL data base.

13. Scripting language: Python is considered as scripting language as it is interpreted and it

is used on the Internet to support other software.

14. Database connectivity: Python provides interface to connect its programs to all major
databases like Oracle, Sybase or MySQL.

15. Scalable: Python programs are scalable since they can run on any platform and use the
features of the new platform effectively.

Comparison between C and Python

C-Language Python

Procedure Oriented Programming Language Object Oriented Programming Language

Program execute faster Program execute slower compare to C

Declaration of variable is compulsory Type declaration is NOT required.

Type discipline is static and weak Type discipline is dynamic and string

Pointer is available No pointer

Does not have exception handling Handles exceptions

It has while, for and do-while loops It has while and for loops

VI Sem BSc- PMCs SSCASC@Tumkur

SP_Python Programming 4

It has switch-case statement It does not have switch-case statement

The variable in for loop does not incremented

automatically.

The variable in the for loop incremented

automatically.

Memory allocation and de-allocation is not

automatic

Memory allocation and de-allocation is done

automatically by PVM.

It does not contain a garbage collection Automatic garbage collection

It supports single and multi dimensional arrays It supports only single dimensional array.

Implement multi dimensional array we should
use third party application like numpy.

The array index should be positive integer. Array index can be positive and negative

integer. Negative index represents location
from the end of the array.

Indentation of statements in not necessary Indentation is required to represents a block

of statements.

A semicolon is used to terminate the

statements and comma is used to separate
expressions / variables.

New line indicates end of the statements and

semicolon is used as an expression separator.

It supports in-line assignment It does not supports in-line assignment.

Comparison between Java and Python

Java Python

Pure Object-Oriented Programming Language Both Object-Oriented and Procedure-Oriented
programming language

Java programs are verbose. Python programs are concise and compact.

Declaration of variable is compulsory Type declaration is NOT required.

Type discipline is static and weak Type discipline is dynamic and string

It has while, for and do-while loops It has while and for loops

It has switch-case statement It does not have switch-case statement

The variable in for loop does not incremented
automatically.

The variable in the for loop incremented
automatically.

Memory allocation and de-allocation is

automatically by JVM

Memory allocation and de-allocation is done

automatically by PVM.

It supports single and multi dimensional arrays It supports only single dimensional array.
Implement multi dimensional array we should

use third party application like numpy.

The array index should be positive integer. Array index can be positive and negative
integer. Negative index represents location

from the end of the array.

Indentation of statements in not necessary Indentation is required to represents a block
of statements.

A semicolon is used to terminate the
statements and comma is used to separate
expressions / variables.

New line indicates end of the statements and
semicolon is used as an expression separator.

The collection objects like stack, linked list or
vector but not primitive data types like int,

float, char etc.,

The collection objects like lists and dictionaries
can store objects of any type including

numbers and lists.

VI Sem BSc- PMCs SSCASC@Tumkur

SP_Python Programming 5

Python Virtual Machine (PVM) or Interpreter
 Python converts the source code into byte code. Byte code represents the fixed set of

instructions created by Python developers representing all types of operations. The size of each
byte code instruction is 1 byte.

The role of PVM is to convert the byte code instructions into machine code. So that the
computer can execute those machine code instruction and display the final output. The PVM is
also called as interpreter.

Python Shell
Python Interpreter is a program which translates your code into machine language and then
executes it line by line.
We can use Python Interpreter in two modes:

1. Interactive Mode.
2. Script Mode.

In Interactive Mode, Python interpreter waits for you to enter command. When you type the
command, Python interpreter goes ahead and executes the command, then it waits again
for your next command.
In Script mode, Python Interpreter runs a program from the source file.

Interactive Mode
Python interpreter in interactive mode is commonly known as Python Shell. To start the
Python Shell enter the following command in terminal or command prompt:

To start the Python 3 Shell enter python3 instead of just python.
1
2
3
4
5

q@vm:~$ python3
Python 3.5.2 (default, Nov 17 2016, 17:05:23)
[GCC 5.4.0 20160609] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>>

What you are seeing is called Python Shell. >>> is known as prompt string, it simply means
that Python shell is ready to accept you commands. Python shell allows you type Python
code and see the result immediately.
In Python shell, enter the following calculations one by one and hit enter to get the result.

>>>
>>> 88 + 4
92
>>> 45 * 4
180

Script Mode
Python Shell is great for testing small chunks of code but there is one problem – the
statements you enter in the Python shell are not saved anywhere.

In case, you want to execute same set of statements multiple times you would be better off
to save the entire code in a file. Then, use the Python interpreter in script mode to execute
the code from a file.

VI Sem BSc- PMCs SSCASC@Tumkur

SP_Python Programming 6

Create a new file named example.py and following code to it:

print("Welcome to Python Program")
print("BCA 6th Sem")
print("SSCASC Tumkur")

By convention, all Python programs have .py extension. The file example.py is called
source code or source file or script file or module. Execute by typing the following command
an obtained out as follows,
$ python example.py
Welcome to Python Program
BCA 6th Sem
SSCASC Tumkur

Indentation: Whitespace is important in Python. Actually, whitespace at the beginning of

the line is important. This is called indentation. Leading whitespace (spaces and tabs) at the

beginning of the logical line is used to determine the indentation level of the logical line, which

in turn is used to determine the grouping of statements.

This means that statements which go together must have the same indentation. Each such set

of statements is called a block. One thing you should remember is that wrong indentation can

give rise to errors

Basic elements of Python
1. Comments : Comments are non-executable statements. It means neither compiler nor

PVM will not execute them. Comments are any text to the right of the # symbol and is
mainly useful as notes for the reader of the program. There are two types of comments

in Python, Single line comments and Multiline comments
a. Single line Comments: this comment starts with a hash symbol (#) and are useful to

mention that the entire line till the end should be treated as comments.
Eg. # To find the sum of two number
 k=5 # assign 5 to variable k.
In the above example, first line starts with # and hence the total line treated as

comments. In second line part of this line starting from # to the end of the line treated

as comments.
b. Multi line Comments: The triple double quotes (“””) or triple single quotes (‘’’) are

called multi line comments or block comments. They are used to enclose a block of lines
as comments.
Eg-1. “”” This is illustrated as multi line comments
 To find the sum of two number

 Using Triple double quotes

 “””

2. Identifiers: Identifier is the name given to various program elements like variables,

function, arrays, classes, strings etc.,

The Python identifiers follow the following rules:

i. The Name should begin with an alphabet.

VI Sem BSc- PMCs SSCASC@Tumkur

SP_Python Programming 7

ii. Only alphabets, digits and underscores are permitted.
iii. Distinguish between uppercase and lowercase alphabets.

iv. Keywords should not be used as identifiers.
v. No blank space between the identifiers.

e.g. Valid Identifiers :

Area

area_tri

num1

3. Keywords: The keywords have predefined meaning assigned by the Python Complier.

The keywords are also called as reserved word. All keywords are written in lower case

alphabets. The Python keywords are:

and del for lambda true

as elif from not try

assert else global or while

break except if pass with

class exec import print yield

continue false in raise

def finally is return

4. Variable: Is a program element, whose value changes during the execution of the

program. Unlike other programming languages, Python has no command for
declaring a variable.
A variable is created the moment you first assign a value to it.

Eg. x=5;

 y=”kvn”
Variables do not need to be declared with any particular type and can even change
type after they have been set.

5. Constants: Constant is a program element, while execution of a program the value
does not change. A constant gets stored in a memory location but the address of the

location is not accessible to the programmer

Assigning value to a constant in Python

In Python, constants are usually declared and assigned on a module. Here, the module

means a new file containing variables, functions etc which is imported to main file.

VI Sem BSc- PMCs SSCASC@Tumkur

SP_Python Programming 8

Inside the module, constants are written in all capital letters and underscores separating
the words.

Eg.:

Create a constant.py
PI = 3.14

6. Literals : Literal is a raw data given in a variable or constant. In Python, there are
various types of literals they are as follows:

a. Numeric Literals : Numeric Literals are immutable (unchangeable). Numeric literals
can belong to 3 different numerical types Integer, Float and Complex.

E.g. a=5 # integer literal

 b=2.5 # float literal

 c=3.5j # complex literal

b. String literals : A string literal is a sequence of characters surrounded by quotes. We
can use both - single, double or triple quotes for a string. Character literal is a single
character surrounded by single or double quotes.

E.g. str=”SSCASCT”

c. Boolean literals : A Boolean literal can have any of the two values: True or False.

E.g. x=true

 Y=false

d. Special literals: Python contains one special literal i.e. None. We use it to specify to

that field that is not created.

E.g. k=none

7. Data Types: A data type represents the type of data stored into a variable

or memory. There are 5 different data types are:

 None type
 Numeric type

 Sequences

 Sets

 Dictionary

VI Sem BSc- PMCs SSCASC@Tumkur

SP_Python Programming 9

i. None data type : The none data type represents an object that does not

contain any value. In java language it is called “NULL” object. But in

Python it is called as “none”. In Python maximum of only one ‘none’

object is provided. If no value is passed to the function, then the default
value will be taken as ‘none’.

ii. Numeric data type: The numeric type represents numbers. There are 3 sub

types:
 int

 float

 complex

int data type: The int data type represents integer number (Whole number).
An integer number is number without fraction. Integers can be of any length, it

is only limited by the memory available.

E.g. a=10
 b=-29

float data type: The float data type represents floating point number. A

floating point number is a number with fraction. Floating point numbers can also
be written in scientific notation using exponentiation format.

A floating point number is accurate up to 15 decimal places. Integer and floating

points are separated by decimal points.

complex data type: A complex number is number is written in the form of
x +yj or x+yJ. Here x is the real part and y is the imaginary part.
We can use the type() function to know which class a variable or a value belongs to and
the isinstance() function to check if an object belongs to a particular class.
E.g.

a = 5

print(a, "is of type", type(a))

b = 2.0

print(a, "is of type", type(b))

iii. Sequences: A sequence represents a group of items or elements. There are

six types of sequences in Python. Important sequences as follows,
 str

 list

 tuple

VI Sem BSc- PMCs SSCASC@Tumkur

SP_Python Programming 10

str data type : The str represents string data type. A string is a collection of
character enclosed in single or double quotes. Both are valid.
E.g. str=”kvn” # str is name of string variable

 str=’vedish’ # str is name of string variable

Triple double quote or triple single quotes are used to embed a string in a
another string (Nested string).
str=”””This is ‘str data type’ example”””

 print(str) # output is : This is ‘str data type’ example

The [] operator used to retrieve specified character from the string. The
string index starts from 0. Hence, str[0] indicates the 0th character in the

string.

e.g str=” SSCASC Tumkur”
 print(str) # it display - SSCASC Tumkur
 print(str[0]) # it display - G

list data type: A List is a collection which is ordered and changeable. It

allows duplicate members. A list is similar to array. Lists are represented by

square brackets [] and the elements are separated by comma.

The main difference between a list and an array is that a list can store

different data type elements, but an array can store only one type of

elements. List can grow dynamically in memory but the size of array is fixed

and they cannot grow dynamically.

e.g. list=[10,3.5,-20, “SSCASCT”,’TUMKUR’] # create a list

 print(list) # it display all elements in the list : 10,3.5,-20,

“SSCASCT”,’TUMKUR’

tuple data type: A tuple is similar to list. A tuple contains group of

elements which can be different types. The elements in the tuple are

separated by commas and enclosed in parentheses (). The only

difference is that tuples are immutable. Tuples once created cannot be

modified. The tuple cannot change dynamically. That means a tuple can be

treated as read-only list.

e.g. tpl=(10,3.5,-20, “SSCASCT”,’TUMKUR’) # create a tuple

 print(tpl) # it display all elements in the tuple : 10,3.5,-20,

“SSCASCT”,’TUMKUR’

iv. Sets: Set is an unordered collection of unique items and un-indexed. The
order of elements is not maintained in the sets. A set does not accept

duplicate elements. Set is defined by values separated by comma inside

braces { }.
There are two sub types in sets:

 Set data type

VI Sem BSc- PMCs SSCASC@Tumkur

SP_Python Programming 11

 Frozen set data type
Set data type: To create a set, we should enter the elements separated by

comma inside a curly brace.

e.g. s = {10,30, 5, 30,50}

 print(s) # it display : {10,5,30,50}
In the above example, it displays un-orderly and repeated elements only

once, because set is unordered collection and unique items.

We can use set() to create a set as
K=set(“kvn”)

Print(K) # it display : “kvn”

Frozen set data type: Frozen set is just an immutable version of a Python

set object. While elements of a set can be modified at any time, an element

of frozen set remains the same after creation. Due to this, frozen sets can be

used as key in Dictionary or as element of another set.

v. Dictionary: A dictionary is an unordered collection, changeable and

indexed. In Python dictionaries are written with curly brackets, and they
have keys and values. That means dictionary contains pair of elements such

that first element represents the key and the next one becomes its value.

The key and value should be separated by a colon(:) and every pair should
be separated by comma. All the elements should be enclosed inside curly

brackets.

e.g.

 d={3: ‘sscasc’, 4:’tumkur’, 5:’kvn’, 6: ‘vedish’}
Here, d is the name of dictionary. 3 is the key and its associated value is ‘sscasc’.

The next is 4 and its value is ‘tumkur’ and so on.

Print(d) # it display : ={3: ‘sscasc’, 4:’tumkur’, 5:’kvn’, 6: ‘vedish’}

Print(d[5]) # it display : kvn

String operations:

1. Extract specified character from the string. Get the character at position 1

(remember that the first character has the position 0):

a= "Hello,Python!"

print(a[6]) # it display : P
2. Substring: Extract number of character from the specified position. Get the

characters from position 2 to position 5 (not included):

b= "Hello,Python!"
print(b[6:8]) # it display : Ph

3. The strip() method removes any whitespace from the beginning or the end of
the given string.

a= " Hello,Python! "

print(a.strip()) # it display : "Hello,Python!"

4. The len() method returns the length of a given string

VI Sem BSc- PMCs SSCASC@Tumkur

SP_Python Programming 12

a= " Python"

print(a.len()) # it display : 6

5. The lower() method returns the given string in lower case.

a= " PYTHON"

print(a.lower()) # it display : python

6. The upper() method returns the given string in upper case.

a= " python"

print(a.upper()) # it display : PYTHON

7. The replace() method replaces a given string with another string

a= "FOR"

print(a.replace(‘O’ , ‘A’)) # it display : FAR

8. The split() method splits the string into substrings if it finds instances of
the separator

a= "Hello,Python!"

print(a.split(‘,’)) # it display : [‘Hello’ , ‘Python’}

Operator and Operand:
Operators are special symbols which represents computation. They are applied on

operand(s), which can be values or variables. Same operator can behave differently

on different data types. Operators when applied on operands form an expression.

Operators are categorized as Arithmetic, Relational, Logical and Assignment. Value
and variables when used with operator are known as operands.

1. Arithmetic Operators :
Symbol Description Example-1 Example-2

+ Addition >>> 5 + 6
11

>>>’SSCASCT’+’BCA’
SSCASCTBCA

- Subtraction >>>10-5
5

>>>5 – 6
-1

* Multiplication >>> 5*6
30

>>>’SSCASCT’ * 2
SSCASCTSSCASCT

/ Division >>> 10 / 5
2

>>>5 /2.0
2.5

% Remainder / Modulo >>> 5 % 2
1

>>>15%5
0

** Exponentiation >>> 2**3
8

>>>2**8
256

// Integer Division >>> 7.0 // 2
3.0

>>>3//2
1

2. Relational Operators :
Symbol Description Example-1 Example-2

< Less than >>> 7<10
True

>>> ‘SSCASCT’ <’BCA’
False

VI Sem BSc- PMCs SSCASC@Tumkur

SP_Python Programming 13

> Greater Than >>> 7 >10
False

>>>’SSCASCT’ > ‘BCA’
True

<= Less than or equal to >>> 7<=10
True

>>>’SSCASCT’ <=’BCA’
False

>= Greater than or equal to >>> 7>=10

False

>>>’SSCASCT’>=’BCA’

True

!= , <> Not equal to >>> 7!=10
True

>>>’SSCASCT’!=
‘sscasct’
True

== Equal to >>> 7==10
False

>>>’SSCASC’
==’SSCASC’
True

3. Logical Operators :
Symbol Description Example-2

or If any one of the operand is true, then
condition becomes TRUE

>>> 7<=10 or 7 ==10
True

and If both the operands are true, then the
condition becomes TRUE

>>>7<10 and 7 >20
False

not Reverse the state of operand / condition >>> not 7<10

False

4. Assignment Operator:
Symbol Description Example-1

= Assigned values from right side operands
to left variable.

>>> x=10
10

Variations of Assignment Operators:

Compound Assignment Operator combines the effect of arithmetic and assignment
operator, the original value of x =5

Symbol Description Example-1

+= added and assign back the result
to left operand

>>> x+=2
7

-= subtracted and assign back the
result to left operand

>>> x-=2
3

*= multiplied and assign back the
result to left operand

>>> x*=2
10

/= divided and assign back the
result to left operand

>>> x/=2
2

%= taken modulus using two
operands and assign the result
to left operand

>>> x%=2
1

**= performed exponential (power)
calculation on operators and
assign value to the left operand

>>> x**=2
25

//= performed floor division on
operators and assign value to

>>> x//=2
2.5

VI Sem BSc- PMCs SSCASC@Tumkur

SP_Python Programming 14

the left operand

5. Bitwise Operator: a bit is the smallest unit of data storage and it can have
only one of the two values, 0 and 1. Bitwise operators works on bits and

perform bit-by-bit operation.

Symbol Description Example

| Performs binary OR operation 5 | 3 gives 7
& Performs binary AND operation 5 & 3 gives 1
~ Performs binary XOR operation 5 ^ 3 gives 6
^ Performs binary one's complement operation ~5 gives -6
<< Left shift operator: The left-hand side operand bit is

moved left by the number specified on the right-hand
side (Multiply by 2)

0010 << 2 gives 8

>> Left shift operator: The left-hand side operand bit is
moved left by the number
specified on the right-hand side (Divided by 2)

0100 << 2 gives 1

6. Membership operators: Python has membership operators, which test for

membership in a sequence, such as strings, lists or tuples. There are two
membership operators are:
Symbol Description Example

in Returns True if the specified operand is found in the
sequence

>>> x = [1,2,4,6,8]
>>> 3 in x
false

Not in Returns True if the specified operand is found in the
sequence

>>> x = [1,2,4,6,8]
>>> 3 not in x
true

7. Identity operator: Identity operators compare the memory locations of two
objects. There are two Identity operators are:
Symbol Description Example Example

is Returns True if two variables point to the
same object and False, otherwise

>>>X=10
>>>Y=10
>>> X is Y
true

>>> x=[1,2,3]
>>> y=[1,2,3]
>>> x is y
false

is not Returns False if two variables point to the
same object and True, otherwise

>>>X=10
>>>Y=10
>>> X is not Y
false

>>> x=[1,2,3]
>>> y=[1,2,3]
>>> x is not y
true

VI Sem BSc- PMCs SSCASC@Tumkur

SP_Python Programming 15

CHAPTER 2
CREATING PYTHON PROGRAM

Input function
The print function enables a Python program to display textual information to the
user. Programs may use the input function to obtain information from the user. The

simplest use of the input function assigns a string to a variable:
x = input()
The parentheses are empty because the input function does not require any
information to do its job. usinginput.py demonstrates that the input function
produces a string value.

Exaple: Demonstrates that the input function

print('Please enter some text:')
x = input()
print('Text entered:', x)
print('Type:', type(x))

Since user input always requires a message to the user about the expected

input, the input function optionally accepts a string and prints just before the
program stops to wait for the user to respond.

The statement variable = input("Enter a value: ")

The value entered is a string. You can use the function eval to evaluate and
convert it to a numeric value.

Example: eval("34.5") returns 34.5, eval("345") returns 345.

Example: Compute area with console input

Prompt the user to enter a radius
 radius = eval(input("Enter a value for radius: "))

Compute area
 area = radius * radius * 3.14159
#Display results
 print("The area for the circle of radius",radius,"is",area)

Compute Average
Prompt the user to enter three numbers
number1 = eval(input("Enter the first number: "))
number2 = eval(input("Enter the second number: "))
number3 = eval(input("Enter the third number: "))
Compute average
average = (number1 + number2 + number3) / 3
Display result
print("The average of", number1, number2, number3,"is",average)

Print Function

The print a line of text, and then the cursor moves down to the next line so any future
printing appears on the next line.

print('Please enter an integer value:')
The print statement accepts an additional argument that allows the cursor to remain
on the same line as the printed text:

print('Please enter an integer value:', end=' ')

VI Sem BSc- PMCs SSCASC@Tumkur

SP_Python Programming 16

The expression end=' ' is known as a keyword will cause the cursor to remain on the
same line as the printed text. Without this keyword argument, the cursor moves down
to the next line after printing the text.
Another way to achieve the same result is

print(end='Please enter an integer value: ')
This statement means “Print nothing, and then terminate the line with the string
'Please enter an integer value:' rather than the normal \n newline code.
The statement

print('Please enter an integer value:', end='\n')
that is, the default ending for a line of printed text is the string '\n', the newline
control code. Similarly, the statement

print()
is a shorter way to express

print(end='\n')
By default, the print function places a single space in between the items it

prints. Print uses a keyword argument named sep to specify the string to use insert
between items. The name sep stands for separator. The default value of sep is the
string ' ', a string containing a single space. The program printsep.py shows the sep

keyword customizes print’s behaviour.

Program to illustrate sep:
w, x, y, z = 10, 15, 20, 25
print(w, x, y, z)
print(w, x, y, z, sep=' , ')
print(w, x, y, z, sep=' ')
print(w, x, y, z, sep=' : ')
print(w, x, y, z, sep='-----')

The output
10 15 20 25
10,15,20,25
10 15 20 25
10:15:20:25
10-----15-----20-----25

Formatting Numbers and Strings

Format function is used to return a formatted string for displaying numbers in
a certain desirable format. For example, the following code computes interest, given

the amount and the annual interest rate.
>>> amount = 12618.98
>>> interestRate = 0.0013
>>> interest = amount * interestRate
>>> print("Interest is", format(interest, ".2f "))
Interest is 16.40
>>>
The syntax to invoke this function is
format(item, format-specifier)
Where item is a number or a string and format-specifier is a string that specifies how
the
item is formatted. The function returns a string.

VI Sem BSc- PMCs SSCASC@Tumkur

SP_Python Programming 17

Frequently Used Specifiers

Specifier Format

"10.2f" Format the float item with width 10 and precision 2.

"10.2e" Format the float item in scientific notation with width 10 and precision

2.

"5d" Format the integer item in decimal with width 5.

"5x" Format the integer item in hexadecimal with width 5.

"5o" Format the integer item in octal with width 5.

"5b" Format the integer item in binary with width 5.

"10.2%" Format the number in decimal.

"50s" Format the string item with width 50.

"<10.2f” Left-justify the formatted item.

">10.2f" Right-justify the formatted item.

Placeholder substitution within a formatting string

 print('{0} {1}'.format(2, 10**2))
This expression has two main parts:
• '{0} {1}': This is known as the formatting string. It is a Python string because it is a
sequence of characters enclosed with quotes. Notice that the program at no time
prints the literal string {0} {1}. This formatting string serves as a pattern that the
second part of the expression will use. {0} and {1} are placeholders, known as
positional parameters, to be replaced by other objects. This formatting string,
therefore, represents two objects separated by a single space.
• format(2, 10**2): This part provides arguments to be substituted into the formatting
string. The first argument, 2, will take the position of the {0} positional parameter in

the formatting string. The value of the second argument, 10**2, which is 100, will
replace the {1} positional parameter.

VI Sem BSc- PMCs SSCASC@Tumkur

SP_Python Programming 18

Program to Illustrate Format Specifier
print(format(57.467657, "10.2f"))
print(format(57.467657, "10.2e"))
print(format(0.53457, "10.2%"))
print(format(59832, "10d"))
print(format(59832, "<10d"))#Left Justfy
print(format(59832, "10x"))#Converts to HexaDecimal
print(format("Welcome to Python", "20s"))
print(format("Welcome to Python", "<20s"))
print(format("Welcome to Python", ">20s"))#Right Justify
print('{0} {1}'.format(7,10**7))
print('Sum of {0} and {1} is {2}'.format(4,5,4+5))

Output

CONTROL STATEMENTS

If Statements
A one-way if statement executes the statements if the condition is true. The syntax for
a one-way if statement is:

if boolean-expression:
 statement(s) # Note that the statement(s) must be indented

• The reserved word if begins a if statement.
• The condition is a Boolean expression that determines whether or not the body will
be
 executed. A colon (:) must follow the condition.
• The block is a block of one or more statements to be executed if the condition is true.
 The statements within the block must all be indented the same number of spaces
from
 the left. The block within an

Example:To demonstrate simple if

#Get two integers from the user
dividend = int(input('Please enter the number to divide: '))

VI Sem BSc- PMCs SSCASC@Tumkur

SP_Python Programming 19

divisor = int(input('Please enter dividend: '))
If possible, divide them and report the result
if divisor != 0:
 quotient = dividend/divisor
 print(dividend, '/', divisor, "=", quotient)
print('Program finished')

Output
Please enter the number to divide: 4
Please enter dividend: 5
4 / 5 = 0.8
Program finished
>>>

If-else statements
A two-way if-else statement decides which statements to execute based on whether
the condition is true or false.
The syntax for a two-way if-else statement:

if boolean-expression:
 statement(s) #for-the-true-case ,the statement(s) must be indented
else:
 statement(s) #for-the-false-case

Example: To demonstrate if else

percent=float(input("Enter Percentage"))
if percent >= 90.0:
 print ("congratulations, you got an A")
 print ("you are doing well in this class")
else:
 print ("you did not get an A")
 print ("see you in class next week")

Nested if statements.

A series of tests can written using nested if statements.

Example: Nestedif
percent=float(input("Enter Percentage"))
if (percent >= 90.00):
 print ('congratuations, you got an A')
else:
 if (percent >= 80.0):
 print ('you got a B')
 else:
 if (percent >= 70.0):
 print ('you got a C')
 else:
 print ('your grade is less than a C')

VI Sem BSc- PMCs SSCASC@Tumkur

SP_Python Programming 20

If_elif_else Statement
In Python we can define a series of conditionals (multiple alternatives) using if

for the first one, elif for the rest, up until the final (optional) else for anything not
caught by the other conditionals.

Example:If_elif_else
score=int(input("Enter Score"))
if score >= 90.0:
 grade = 'A'
elif score >= 80.0:
 grade = 'B'
elif score >= 70.0:
 grade = 'C'
elif score >= 60.0:
 grade = 'D'
else:
 grade = 'F'
print("Grade=",grade)

Using else if instead of elif will trigger a syntax error and is not allowed.

Loops
It is one of the most basic functions in programming; loops are an important in every

programming language. Loops enable is to execute a statement repeatedly which are

referred to as iterations. (A loop is used to tell a program to execute statements repeatedly).

The simplest type of loop is a while loop.

The syntax for the while loop is:

while loop-continuation-condition:
Loop body
Statement(s) # Note that the statement(s) must be indented

Example1: To demonstrate while

count = 0#Program to print “Programming is fun!” for 10 times
while count < 10:
 print("Programming is fun!")
 count = count + 1

Example2:

#program to read a series of values from the user, count the
#number of items, and print their count, sum and average.
#User indicates the end of the input by typing the special value -
1.

i = initialValue # Initialize loop-control variable
while i < endValue:

Loop body
...
i += 1 # Adjust loop-control variable

VI Sem BSc- PMCs SSCASC@Tumkur

SP_Python Programming 21

sum = 0
count = 0
num=int(input("Enter your number:"))
while num != -1:
 sum = sum + num
 count = count + 1
 num =int(input("enter your number:"))
print ("Count is :", count)
print ("Sum is :", sum)
print ("Average is :", sum / count)

The for Loop

A for loop iterates through each statements in a sequence for exactly know many times

the loop body needs to be executed, so a control variable can be used to count the

executions. A loop of this type is called a counter-controlled loop. In general, the loop

can be written as follows:

for i in range(initialValue, endValue):

Loop body # Note that the statement(s) must be indented

In general, the syntax of a for loop is:

for var in sequence:
Loop body

The function range(a, b) returns the sequence of integers a, a + 1, ..., b-2, and b- 1.

The range function has two more versions. You can also use range(a) or range(a, b,

k). range(a) is the same as range(0, a). k is used as step value in range(a, b, k). The

first number in the sequence is a. Each successive number in the sequence will

increase by the step value k. b is the limit. The last number in the sequence must be

less than b.

Example1:To demonstrate For

for i in range(5):
 print (i)

Example2:

str=input("Enter a string")
for ch in str:
 if ch in 'aeiou':
 print ('letter', ch, 'is a vowel')
 else:
 print ('letter ', ch, 'is not a vowel')

VI Sem BSc- PMCs SSCASC@Tumkur

SP_Python Programming 22

Output of example2

We can iterate through a list by using for:

Example3
for x in ['one', 'two', 'three', 'four']:

print(x)
This will print out the elements of the list:
one
two
three
four

Iterating over dictionaries:

Considering the following dictionary:
d = {"a": 1, "b": 2, "c": 3}
#To iterate through its keys, we can use:
for key in d:
 print(key)Output:
Output:
"a"
"b"
"c"

VI Sem BSc- PMCs SSCASC@Tumkur

SP_Python Programming 23

Break and Continue in Loops
break statement:

When a break statement executes inside a loop, control flow comes out of the loop

immediately:

Example:to demonstrate break

i = 0
while i < 7:
 print(i)
 if i == 4:
 print("Breaking from loop")
 break
 i += 1

The loop conditional will not be evaluated after the break statement is executed. Note

that break statements are only allowed inside loops. A break statement inside a

function cannot be used to terminate loops that called that function.

Executing the following prints every digit until number 4 when the break statement is

met and the loop stops:

Output

01234
Breaking from loop

Break statements can also be used inside for loops, the other looping construct

provided by Python:

Example:

for i in (0, 1, 2, 3, 4):

 print(i)
 if i == 2:
 break

Executing this loop now prints:

012

Note that 3 and 4 are not printed since the loop has ended.

Continue statement

A continue statement will skip to the next iteration of the loop bypassing the

rest of the current block but continuing the loop. Continue can only used inside loops:

Example to demonstrate continue

for i in (0, 1, 2, 3, 4, 5):

 if i == 2 or i == 4:
 continue

 print(i)

Note that 2 and 4 aren't printed, this is because continue goes to the next

iteration instead of continuing on to print(i) when i == 2 or i == 4.

VI Sem BSc- PMCs SSCASC@Tumkur

SP_Python Programming 24

Executing this loop now prints:

0135

The Pass

The pass statement is used in code in places where the language requires a

statement to appear but we wish the program to take no action. We can make the code

fragment legal by adding a pass statement:

if x < 0:
pass # Do nothing
else:
print(x)

Pass is a null statement, when a statement is required by Python syntax (such

as within the body of a for or while loop), but no action is required or desired by the

programmer. This can be useful as a placeholder for code that is yet to be written.

Example: to demonstrate pass

for x in range(10):
pass #we don't want to do anything, so we'll pass

In this example, nothing will happen. The for loop will complete without error, but no

commands or code will be actioned. Pass allows us to run our code successfully

without having all commands and action fully implemented. Similarly, pass can be

used in while loops, as well as in selections and function definitions etc.

Nested Loops

A loop can be nested inside another loop. Nested loops consist of an outer loop and

one or more inner loops. Each time the outer loop is repeated; the inner loops are re-

entered and started a new. Below is classical example for nesting of loops.

Example: Multiplcationtable

print(" Multiplication Table")
Display the number title
print(" |", end = '')
for j in range(1, 10):
 print(" ", j, end = ' ')
print() # Jump to the new line
print("——")
Display table body
for i in range(1, 10):
 print(i, "|", end = '')
Display the product and align properly
 for j in range(1, 10):
 print(format(i * j, "4d"), end = '')
 print() # Jump to the new line

Output

VI Sem BSc- PMCs SSCASC@Tumkur

SP_Python Programming 25

FUNCTIONS

 A function is a collection of statements grouped together that performs an

operation.
 A function is a way of packaging a group of statements for later execution.

The function is given a name. The name then becomes a short-hand to

describe the process. Once defined, the user can use it by the name, and not

by the steps involved. Once again, we have separated the “what” from the

“how”, i.e. abstraction.
Functions in any programming language can fall into two broad categories:

 Built-in functions

They are predefined and customized, by programming languages and each serves a
specific purpose.

 User-defined functions

They are defined by users as per their programming requirement.

There are two sides to every Python function:

• Function definition. The definition of a function contains the code that determines

the function’s behaviour.

• Function call. A function is used within a program via a function invocation.

Defining a Function

A function definition consists of the function’s name, parameters, and body.
The syntax for defining a function is as follows:

def functionName(list of parameters):
 Statements # Note that the statement(s) must be indented
 return

 A function contains a header and body. The header begins with the def keyword,

followed by the function’s name known as the identifier of the function and
parameters, and ends with a colon.

 The variables in the function header are known as formal parameters or simply
parameters. When a function is invoked, you pass a value to the parameter. This

VI Sem BSc- PMCs SSCASC@Tumkur

SP_Python Programming 26

value is referred to as an actual parameter or argument. Parameters are optional;
that is, a function may not have any parameters.

 Statement(s) – also known as the function body – are a nonempty sequence of
statements executed each time the function is called. This means a function body
cannot be empty, just like any indented block.

 Some functions return a value, while other functions perform desired operations
without returning a value. If a function returns a value, it is called a value-
returning function.

Calling a Function

Calling a function executes the code in the function. In a function’s definition, you
define what it is to do. To use a function, you have to call or invoke it. The program
that calls the function is called a caller. There are two ways to call a function,
depending on whether or not it returns a value. If the function returns a value, a call
to that function is usually treated as a value.

For example,
larger = max(3, 4)
Calls max(3, 4) and assigns the result of the function to the variable larger.
Another example of a call that is treated as a value is

print(max(3, 4))
This prints the return value of the function call max (3, 4).

Example:
Return the max of two numbers
Function with arguments and return
def max(num1, num2):
 if num1 > num2:
 result = num1
 else:
 result = num2
 return result
def main():
 i = 5
 j = 2

VI Sem BSc- PMCs SSCASC@Tumkur

SP_Python Programming 27

 k = max(i,j)# Call the max function
 print("The larger number of", i, "and", j, "is", k)
main() # Call the main function
Output

The larger number of 5 and 2 is 5

Categories of User-defined functions
1. Function with arguments
2. Function with an argument and return type
3. Function with default argument
4. Function with variable length argument
5. Pass by reference.

Function with arguments
A function can contain any number of arguments depending on the

requirement.
Example:

def func(passArgument):#function definition
print passArgument

str = "Hello all"
func(str)# function call

In this example, the func function accepts one argument which has a data type
string. We create a variable str with a certain string statement assigned and then we
call
the func function and thereby pass the value of str.
Finally, the output will be:

Hello all

Function with an argument and return type
This type of function takes any arbitrary number of arguments and return

specific data type or value from it.
Example: Refer above program Fun_max.py

Function with default argument
In this type of function, the formal parameter assigned with some value,

represents a default parameter or default argument. If the caller does not supply an
actual parameter, the formal parameter value is assigned.
Example:
def info(name, age=50):

print("Name:", name)
print("Age:", age)

info("John", age=28)
info("James")

Output: Name: John
 Age: 28

 Name: James
 Age: 50

Function with variable length argument
There might be a scenario where you need to pass more arguments than specified
during the function definition. In this case, variable length arguments can be passed:

VI Sem BSc- PMCs SSCASC@Tumkur

SP_Python Programming 28

Syntax
def function_name(arg, *var):

code block
return

Here, arg means normal argument which is passed to the function. The *var refers to

the
variable length argument.
Example:

def variable_argument(arg, *vari):
 print ("Out-put is",arg)
 for var in vari:
 print (var)

variable_argument(60)
variable_argument("Hari",100,90,40,50,60)

Output: Out-put is 60
 Out-put is Hari
 100
 90
 40
 50
 60
 >>>

Pass by reference versus pass by value

In pass by reference values to the argument of the function are passed as reference,
that is, the address of the variable is passed and then the operation is done on the
value stored at these addresses.

Pass by value means that the value is directly passed as the value to the argument of
the function. In this case, the operation is done on the value and then the value is
stored at the address.

In Python arguments, the values are passed by reference. During the function call, the
called function uses the value stored at the address passed to it and any changes to it
also affect the source variable:

Example: call by reference

def pass_ref(list1):#Call by ref
 list1.extend([23,89])
 print ("list inside the function: ",list1)

list1 = [12,67,90]
print ("list before pass", list1)
pass_ref(list1)
print ("list outside the function", list1)

Output:
 list before pass [12, 67, 90]

list inside the function: [12, 67, 90, 23, 89]
list outside the function [12, 67, 90, 23, 89]

VI Sem BSc- PMCs SSCASC@Tumkur

SP_Python Programming 29

Here, in the function definition, we pass the list to the pass_ref function and then we
extend the list to add two more numbers to the list and then print its value. The list
extends inside the function, but the change is also reflected back in the calling
function. We finally get the output by printing out different representations of the list:
Let's look at another Example:

def func(a):#call by value function
a=a+4
print ("Inside the function", a)

a= 10
func(a)
print ("Outside the function", a)

The preceding example call by value, as the change happening inside the Python
function does not get reflected back in the calling function. It is still a pass by
reference, as, in this situation inside the function, we made new assignment, that is,
a= a+4. Although you might think that a = a + 4 is changing the number stored in a,
but it is actually reassigning a to point to a new value:

Returning Multiple Values from a Function
In python function, we can return multiple values. We can use return statements as

return a,b,c
Here a,b,c values returned by function as tuples and we have to use three variables to
receive these values in called function as shown below
 X,Y,Z=function()
Example:sum_sub_mul

def Sum_Sub_Mul(a,b):
 sum=a+b
 sub=a-b
 mul=a*b
 return sum,sub,mul
def main():
 a=10
 b=5
 X,Y,Z=Sum_Sub_Mul(a,b)
 print("Sum of two no=",X)
 print("Sub of two no=",Y)
 print("Mul of two no=",Z)
 print("Sum, Sub and Mul of two no:")
 T=Sum_Sub_Mul(a,b)#Retrieving multiple value using Tuples
 for i in T:
 print(i,end='\n ')
main()

Output
Sum of two no= 15
Sub of two no= 5
Mul of two no= 50
Sum, Sub and Mul of two no:
15
5
50
>>>

VI Sem BSc- PMCs SSCASC@Tumkur

SP_Python Programming 30

Local and Global Variables

When we declare variable inside a function it becomes a local variable and its scope is
limited to that function where it is created and it is available in that function and not
available outside the function.

When a variable declared outside the function, it is available to all function which are
using these variables.

Sometimes local variable and global variable have the same name, in this case the
function ignores global variable and uses local variable only.

When the programmer wants to use the global variable inside a function, we can use
the keyword global before the variable in the beginning of the function body.

Example:

b=20#global variable
c=30
def myfunction():
 a=10#Local variable
 print("Global B:",b)
 print("Local A:",a)
 global c#This is global c
 print("Global C:",c)
 c=50#this is local c
 print("Local C:",c)

myfunction()

Output
Global B: 20
Local A: 10
Global C: 30
Local C: 50
>>>

RECURSION

A recursive function is one that invokes itself. Or A recursive function is a
function that calls itself in its definition.
For example the mathematical function, factorial, defined by factorial(n) = n*(n-1)*
 (n-2)*...*3*2*1. can be programmed as

def factorial(n):
#n here should be an integer
if n == 0:
return 1
else:

return n*factorial(n-1)

Any recursive function can be divided into two parts.
 First, there must be one or more base cases, to solve the simplest case, which is
referred to as the base case or the stopping condition
 Next, recursive cases, here function is called with different arguments, which are
referred to as a recursive call. These are values that are handled by “reducing” the
problem to a “simpler” problem of the same form.

VI Sem BSc- PMCs SSCASC@Tumkur

SP_Python Programming 31

Example: To find factorial using Recursion
def main():
 n=int(input("Enter a nonnegative integer: "))
 print("Factorial of", n, "is",factorial(n))
 print(" 0! = ", factorial(0))
 print(" 1! = ", factorial(1))
 print(" 5! = ", factorial(6))
 # Return the factorial for the specified number
def factorial(n):
 if n == 0: # Base case
 return 1
 else:
 return n*factorial(n-1) # Recursive call
main()# call the main

Output:
 Enter a nonnegative integer: 5
 Factorial of 5 is 120
 0! = 1
 1! = 1
 5! = 720

PROFILING

Profiling means having the application run while keeping track of several different

parameters, like the number of times a function is called, the amount of time spent

inside it, and so on. Profiling can help us find the bottlenecks in our application, so

that we can improve only what is really slowing us down. Python includes a profiler

called cProfile. It breaks down your entire script and for each method in your script it

tells you:

ncalls: The number of times a method was called

tottime: Total time spent in the given function (excluding time made in calls to sub-

 functions)

percall: Time spent per call. Or the quotient of tottime divided by ncalls

cumtime: The cumulative time spent in this and all subfunctions (from invocation till

 exit). This figure is accurate even for recursive functions.

percall: is the quotient of cumtime divided by primitive calls

filename: lineno(function): provides the respective data of each function

VI Sem BSc- PMCs SSCASC@Tumkur

SP_Python Programming 32

MODULES
A module is a library of functions. Modules are code files meant to be used by other
programs. Normally files that are used as modules contain only class and function
definitions. Modularizing makes code easy to maintain and debug, and enables the
code to be reused. To use a module, we use the import statement. A module can also
import other modules.

Example:GCD_LCM
File name GCD_LCM_Module.py
Return the gcd of two integers
def gcd(n1, n2):
 p = n1 # Initial gcd is 1
 q= n2 # Possible gcd
 while n2!=0:
 r=n1%n2
 n1=n2
 n2=r
 gcd=n1
 lcm=int(p*q/gcd)
 return gcd,lcm # Return gcd and lcm

 Now we write a separate program to use the above module function, as shown
below

File name Test_module
file name Test_module.py
from GCD_LCM_Module import gcd # Import the module
Prompt the user to enter two integers
n1 = eval(input("Enter the first integer: "))
n2 = eval(input("Enter the second integer: "))
print("The GCD and LCM for", n1,"and", n2, "is", gcd(n1, n2))

Output:
Enter the first integer: 6
Enter the second integer: 3
The GCD and LCM for 6 and 3 is (3, 6)
>>>

The import statement
In order to use the functions and variables of the module1.py program, we will use

the import statement. The syntax of the import statement is shown here:

import module1, module2, module
The statements and definitions of modules are executed for the first time when

the interpreter encounters the module name in the import statement.
In preceding code, in order to use the module variables and functions, use the

module_name.variable and module_name.function() notations.
 In order to write module1 with every function of module1.py, Python allows use

the as statement as shown. The syntax is given as follows:
import module_name as new_name

Example:module
def sum1(a,b):

 c = a+b

VI Sem BSc- PMCs SSCASC@Tumkur

SP_Python Programming 33

 return c
def mul1(a,b):
 c = a*b
 return c

Filename:Test_module
import module1 #import module_name
x = 12
y = 34
print ("Sum is ", module1.sum1(x,y))
print ("Multiple is ", module1.mul1(x,y))

Filename:Test_module2.py
import module1 as md #import module_name as new_name
x = 12
y = 34
print ("Sum is ", md.sum1(x,y))
print ("Multiple is ", md.mul1(x,y))

ARRAY, LISTS, SETS AND DICTIONARY
Arrays

An array is a data structure that stores values of same data type. In Python, this is the
main difference between arrays and lists.

While python lists can contain values corresponding to different data types, arrays in
python can only contain values corresponding to same data type.

To use arrays in python language, you need to import the standard array module. This
is because array is not a fundamental data type like strings, integer etc. Here is how
you can import array module in python:

from array import *

Once you have imported the array module, you can declare an array. Here is how you
do it:

arrayIdentifierName = array(typecode, [Initializers])

Typecode Details

B Represents signed integer of size 1 byte

B Represents unsigned integer of size 1 byte

C Represents character of size 1 byte

u Represents unicode character of size 2 bytes

h Represents signed integer of size 2 bytes

H Represents unsigned integer of size 2 bytes

VI Sem BSc- PMCs SSCASC@Tumkur

SP_Python Programming 34

i Represents signed integer of size 2 bytes

I Represents unsigned integer of size 2 bytes

w Represents unicode character of size 4 bytes

1 Represents signed integer of size 4 bytes

L Represents unsigned integer of size 4 bytes

f Represents floating point of size 4 bytes

D Represents floating point of size 8 bytes

Example of an array containing 5 integers:

from array import *
my_array = array('i', [1,2,3,4,5])
for i in my_array:
print(i)
#output:1,2,3,4,5

Some built-in array methods:
Append any value to the array using append() method

my_array = array('i', [1,2,3,4,5])
my_array.append(6)
array('i', [1, 2, 3, 4, 5, 6])

Note that the value 6 was appended to the existing array values.

Insert value in an array using insert() method

my_array = array('i', [1,2,3,4,5])
my_array.insert(0,0)
#array('i', [0, 1, 2, 3, 4, 5])

In the above example, the value 0 was inserted at index 0. Note that the first argument
is the index while second argument is the value.
Extend python array using extend() method

my_array = array('i', [1,2,3,4,5])
my_extnd_array = array('i', [7,8,9,10])
my_array.extend(my_extnd_array)
array('i', [1, 2, 3, 4, 5, 7, 8, 9, 10])

We see that the array my_array was extended with values from my_extnd_array.

Remove any array element using remove()

my_array = array('i', [1,2,3,4,5])
my_array.remove(4)
array('i', [1, 2, 3, 5])

We see that the element 4 was removed from the array.

Remove last array element using pop() method
pop removes the last element from the array.

my_array = array('i', [1,2,3,4,5])

VI Sem BSc- PMCs SSCASC@Tumkur

SP_Python Programming 35

my_array.pop()
array('i', [1, 2, 3, 4])

So we see that the last element (5) was popped out of array.

Fetch any element through its index using index()

index() returns first index of the matching value. Remember that arrays are zero-
indexed.

my_array = array('i', [1,2,3,4,5])
print(my_array.index(5))
#output: 5
my_array = array('i', [1,2,3,3,5])
print(my_array.index(3))
#output: 3

Note in that second example that only one index was returned, even though the value
exists twice in the array

Reverse a python array using reverse() method
The reverse() method reverses the array.

my_array = array('i', [1,2,3,4,5])
my_array.reverse()
array('i', [5, 4, 3, 2, 1])

Sort a python array using sort() method
from array import *
my_array = [1,20,13,4,5]
my_array.sort()
print(my_array)

 #output:1,4,5,13,20

Multi-Dimensional Array
An array containing more than one row and column is called multidimensional

array. It is also called combination of several 1D arrays.2D array is also considered as
matrix.

A=array([1,2,3,4])# create 1D array with 1 row
B=array([1,2,3,4],[5,6,7,8]) create 2D array with 2 row

Example:2D_array

from numpy import*
a=array([[1,2,3],[4,5,6],[7,8,9]])
print(a)#Prints 2D array as rows
print("2D Array Element wise Printing")
for i in range(len(a)):
 for j in range(len(a[i])):
 print(a[i][j],end=' ')#Prints array element wise
 print(end='\n')
print(end='\n')
#2D array As matrix by using matrix fun
print("Matrix printing")
a=matrix('1 2 3; 4 5 6 ; 7 8 9')
print(a)

VI Sem BSc- PMCs SSCASC@Tumkur

SP_Python Programming 36

Output
[[1 2 3]
 [4 5 6]
 [7 8 9]]
2D Array Element wise Printing
1 2 3
4 5 6
7 8 9
Matrix printing
[[1 2 3]
 [4 5 6]
 [7 8 9]]
>>>

Matrix in Numpy
 In python we can show matrices as 2D array. In numpy, a matrix is considered
as specialized 2D array. It has lot of built in operators on 2D matrices. In numpy,
matrix is created using the following syntax.

Matrix_name=matrix(2D array or string)
Eg. a=matrix('1 2 3;4 5 6;7 8 8')

Matrix addition, multiplication and division.
 We can use arithmetic operators like +, -,* ,/ to perform different operations on
matrices.
Example: Matrix_Operation

from numpy import*
a=matrix('4 4 4;4 4 4;4 4 4')
b=matrix('2 2 2;2 2 2;2 2 2')
print("Printing A matrix")
print(a)
print("Printing B matrix")
print(b)
print("Printing Addition of two matrix")
c=a+b #matrix addition
print(c)
print("Printing Multplication of two matrix")
c=a*b #matrix addition
print(c)
print("Printing Division of two matrix")
c=a/b #matrix addition
print(c)

 Output
Printing A matrix
[[4 4 4]
 [4 4 4]
 [4 4 4]]
Printing B matrix
[[2 2 2]
 [2 2 2]
 [2 2 2]]
Printing Addition of two matrix

VI Sem BSc- PMCs SSCASC@Tumkur

SP_Python Programming 37

[[6 6 6]
 [6 6 6]
 [6 6 6]]
Printing Multplication of two matrix
[[24 24 24]
 [24 24 24]
 [24 24 24]]
Printing Division of two matrix
[[2. 2. 2.]
 [2. 2. 2.]
 [2. 2. 2.]]
>>>

Example: #prog to accept matrix from key board and display its transpose.

from numpy import*
Accept Rows and Column of matrix")
r,c=[int(a) for a in input("Enter rows,col:").split()]
str=input("Enter matrix elements:")
#convert the string into amatrix with size r*c
x=reshape(matrix(str),(r,c))
print("The original matrix")
print(x)
print("Printing Transpose of matrix")
y=x.transpose()
print(y)

Output

Enter rows,col: 2 2
Enter matrix elements:1 2 3 4
The original matrix
[[1 2]
 [3 4]]
Printing Transpose of matrix
[[1 3]
 [2 4]]
>>>

LISTS

A list is an object that holds a collection of objects; it represents a sequence of data. A
list can hold any Python object. A list need not be homogeneous; that is, the elements

of a list do not all have to be of the same type.

Like any other variable, a list variable can be local or global, and it must be defined
(assigned) before its use.

The following are the characteristics of a Python list:
 Values are ordered
 Mutable
 A list can hold any number of values
 A list can add, remove, and alter the values

Creating a list
Let's see how we can create an empty list:

VI Sem BSc- PMCs SSCASC@Tumkur

SP_Python Programming 38

<Variable name > = []
E.g. List1 = []
Creating a list with values
A list contains comma-separated values. For example:
a = [1, 2, 3, 4, 5]
Avengers = ['hulk', 'iron-man', 'Captain', 'Thor']

List methods and supported operators

Starting with a given list a:

a = [1, 2, 3, 4, 5]

1. append(value) – appends a new element to the end of the list.

Append values 6, 7, and 7 to the list
a.append(6)
a.append(7)
a.append(7)
a: [1, 2, 3, 4, 5, 6, 7, 7]
Append an element of a different type, as list elements do not need
to have the same type
my_string = "hello world"
a.append(my_string)
a: [1, 2, 3, 4, 5, 6, 7, 7, [8, 9], "hello world"]
Note that the append() method only appends one new element to the end of the

list. If you append a list to another list, the list that you append becomes a

single element at the end of the first list.

Appending a list to another list
a = [1, 2, 3, 4, 5, 6, 7, 7]
b = [8, 9]
a.append(b)
a: [1, 2, 3, 4, 5, 6, 7, 7, [8, 9]]
a[8]
Returns: [8, 9]
2. extend(enumerable) – extends the list by appending elements from another

enumerable.

a = [1, 2, 3, 4, 5, 6, 7, 7]
b = [8, 9, 10]
Extend list by appending all elements from b
a.extend(b)
a: [1, 2, 3, 4, 5, 6, 7, 7, 8, 9, 10]
Extend list with elements from a non-list enumerable:
a.extend(range(3))
a: [1, 2, 3, 4, 5, 6, 7, 7, 8, 9, 10, 0, 1, 2]
Lists can also be concatenated with the + operator. Note that this does not

modify any of the original lists:

a = [1, 2, 3, 4, 5, 6] + [7, 7] + b
a: [1, 2, 3, 4, 5, 6, 7, 7, 8, 9, 10]
3. index(value, [startIndex]) – gets the index of the first occurrence of the input

value. If the input value is not in the list a ValueError exception is raised. If a second

argument is provided, the search is started at that specified index.

a.index(7)

VI Sem BSc- PMCs SSCASC@Tumkur

SP_Python Programming 39

Returns: 6
a.index(49) # ValueError, because 49 is not in a.
a.index(7, 7)
Returns: 7
a.index(7, 8) # ValueError, because there is no 7 starting at index 8
4. insert(index, value) – inserts value just before the specified index. Thus after the

insertion the new element occupies position index.

a.insert(0, 0) # insert 0 at position 0

a.insert(2, 5) # insert 5 at position 2
a: [0, 1, 5, 2, 3, 4, 5, 6, 7, 7, 8, 9, 10]
5. pop([index]) – removes and returns the item at index. With no argument it removes

and returns the last element of the list.

a.pop(2)
Returns: 5
a: [0, 1, 2, 3, 4, 5, 6, 7, 7, 8, 9, 10]
a.pop(8)
Returns: 7
a: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
With no argument:
a.pop()
Returns: 10
a: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
6. remove(value) – removes the first occurrence of the specified value. If the provided

value cannot be found, a ValueError is raised.

a.remove(0)
a.remove(9)
a: [1, 2, 3, 4, 5, 6, 7, 8]
a.remove(10)
ValueError, because 10 is not in a
7. reverse() – reverses the list in-place and returns None.

a.reverse()
a: [8, 7, 6, 5, 4, 3, 2, 1]
8. count(value) – counts the number of occurrences of some value in the list.

a.count(7)
Returns: 2
9. sort() – sorts the list in numerical and lexicographical order and returns None.

a.sort()
a = [1, 2, 3, 4, 5, 6, 7, 8]
Sorts the list in numerical order
10. The slicing of a list. Syntax: <list-name> [start: stop: step]

a = [1, 2, 3, 4, 5, 6, 7, 8]
print(a[2:5]) #Output: [3, 4, 5]

Example:#to demonstrate lists
NUMBER_OF_ELEMENTS = 5
Create an empty list
numbers=[]
sum = 0
for i in range(NUMBER_OF_ELEMENTS):
 value = eval(input("Enter a new number: "))
 numbers.append(value)

VI Sem BSc- PMCs SSCASC@Tumkur

SP_Python Programming 40

 sum += value
average = sum / NUMBER_OF_ELEMENTS
count = 0 # The number of elements above average
for i in range(NUMBER_OF_ELEMENTS):
 if numbers[i] > average:
 count += 1
print("Average is", average)
print("Number of elements above the average is", count)
numbers.append(value)

Multidimensional Lists
 Data in a table or a matrix can be stored in a two-dimensional list. A two-
dimensional list is a list that contains other lists as its elements.
 A value in a two-dimensional list can be accessed through a row and column index. You
can think of a two-dimensional list as a list that consists of rows. Each row is a list that
contains the values. The rows can be accessed using the index, conveniently called a row
index. The values in each row can be accessed through another index, called a column index.

 A two-dimensional list named matrix is illustrated in Figure.

Example: Initializing Lists with Input Values:

#The following loop initializes the matrix with user input values:
matrix = [] # Create an empty list
numberOfRows = eval(input("Enter the number of rows: "))
numberOfColumns = eval(input("Enter the number of columns: "))
for row in range(numberOfRows):
 matrix.append([]) # Add an empty new row
 for column in range(numberOfColumns):
 value = eval(input("Enter an element and press Enter: "))
 matrix[row].append(value)
print("Printing Matrix....")
for row in range(len(matrix)):
 for column in range(len(matrix[row])):
 print(matrix[row][column], end = " ")
 print() # Print a new line

Output:
Enter the number of rows: 2
Enter the number of columns: 2
Enter an element and press Enter: 1
Enter an element and press Enter: 2
Enter an element and press Enter: 3
Enter an element and press Enter: 4
Printing Matrix....
1 2
3 4
>>>

VI Sem BSc- PMCs SSCASC@Tumkur

SP_Python Programming 41

SETS

 Sets are like lists in that you use them for storing a collection of elements. Unlike
lists,

the elements in a set are non-duplicates and are not placed in any particular order.

Creating Sets
 Python provides a data structure that represents a mathematical set. As with
mathematical sets, elements of Set are enclosed inside a pair of curly braces ({ }). The

elements are non-duplicate, separated by commas. You can create an empty set, or you
can create a set from a list or a tuple, as shown in the following examples:
s1 = set() # Create an empty set

s2 = {1, 3, 5} # Create a set with three elements
s3 = set([1, 3, 5]) # Create a set from a tuple

Example: Program to convert Tuple into Set:
#We can make a set out of a list using the set conversion
function:
L = [10, 13, 10, 5, 6, 13, 2, 10, 5]
S=set(L)
print(L)
print(S)
{10, 2, 13, 5, 6}

Example: Operations on Sets:
s1 = {1, 2, 4}
s1.add(6)
print(s1)#prints {1, 2, 4, 6}
print(len(s1))
#prints 4
print(max(s1))
#prints 6
print(min(s1))
#prints 1
print(sum(s1))

VI Sem BSc- PMCs SSCASC@Tumkur

SP_Python Programming 42

#prints 13
print(3 in s1)
#prints False
s1.remove(4)
print(s1)
#prints {1,2,6)
s1 = {1, 2, 4}
s2 = {1, 4, 5, 2, 6}
print(s1.issubset(s2)) # s1 is a subset of s2
#prints True
s1 = {1, 2, 4}
s2 = {1, 4, 5, 2, 6}
print(s2.issuperset(s1)) # s2 is a superset of s1
#prints True
s1 = {1, 2, 4}
s2 = {1, 4, 2}
print(s1 == s2)#prints True
print(s1 != s2)#prints False

Set Operations

Python provides the methods for performing set union, intersection, difference, and
symmetric difference operations.
Example:

s1 = {1, 4, 5, 6}
s2 = {1, 3, 6, 7}
print(s1.union(s2))
print(s1 | s2)
print(s1.intersection(s2))
print(s1 & s2)
print(s1.difference(s2))
print(s1 - s2)
print(s1.symmetric_difference(s2))
print(s1 ^ s2)

Output:

{1, 3, 4, 5, 6, 7}
{1, 3, 4, 5, 6, 7}
{1, 6}
{1, 6}
{4, 5}
{4, 5}
{3, 4, 5, 7}
{3, 4, 5, 7}
>>>

VI Sem BSc- PMCs SSCASC@Tumkur

SP_Python Programming 43

DICTIONARIES
A dictionary is a container object that stores a collection of key/value pairs. It enables
fast retrieval, deletion, and updating of the value by using the key.
A dictionary is a collection that stores the values along with the keys. The keys are like
an index operator. In a list, the indexes are integers. A dictionary cannot contain

duplicate keys. Each key maps to one value. A key and its corresponding value form
an item (or entry) stored in a dictionary, as shown in Figure. The data structure is a
called a “dictionary” because it resembles a word dictionary, where the words are the
keys and the words’ definitions is the values. A dictionary is also known as a map,
which maps each key to a value.

The syntax of a dictionary is as follows:
Dictionary_name = {key: value}

Example:
port = {22: "SSH", 23: "Telnet" , 53: "DNS", 80: HTTP" }
The port variable refers to a dictionary that contains
port numbers as keys and its protocol names as

values.
Consider the following example:
Companies = {"IBM": "International Business
Machines", "L&T" :"Larsen & Toubro"}

Characteristics of dictionary:
 The keys in a dictionary may have different types(string, int, or float)
 The values in a dictionary may have different types
 The values in a dictionary may be mutable objects
 The key of the dictionary cannot be changed i.e. Keys are unique
 Values can be anything, for example, list, string, int, and so on
 Values can be repeated
 Values can be changed
 A dictionary is an unordered collection, which means that the order in which you
have entered the items in a dictionary may not be retained and you may get the
items in a different order i.e. the order of key: value pairs in a dictionary are

independent of the order of their insertion into the dictionary

Operations on the dictionary
A dictionary is mutable; we can add new values, and delete and update old values.
Accessing the values of dictionary
The dictionary's values are accessed by using key. Consider a dictionary of networking
ports: In order to access the dictionary's values, the key is considered.
Port = {80: “HTTP”, 23: “Telnet”, 443: “HTTPS”}
print(port[80])
>>'HTTP'
print(port[443])
>>'HTTPS'
If the key is not found, then the interpreter shows the preceding error.

Deleting an item from the dictionary

VI Sem BSc- PMCs SSCASC@Tumkur

SP_Python Programming 44

del keyword is used to delete the entire dictionary or the dictionary's items.
Syntax to delete dictionary’s item:
del dict[key]
Considering the following code snippet for example:

>>> port = {80: "HTTP", 23 : "Telnet", 443 : "HTTPS"}
>>> del port[23]
>>> print(port)
 {80: 'HTTP', 443: 'HTTPS'}
>>>

Syntax to delete the entire dictionary:
del dict_name
Consider the following example:

>>> port = {80: "HTTP", 23 : "Telnet", 443 : "HTTPS"}
>>> del port
>>> print(port)

Traceback (most recent call last):
File "<pyshell#12>", line 1, in <module>
port
NameError: name 'port' is not defined

>>>

The preceding error shows that the port dictionary has been deleted.

Updating the values of the dictionary
To update the dictionary, just specify the key in the square bracket along with

the dictionary name and assigning new value. The syntax is as follows:
dict[key] = new_value
Example:
port = {80: "HTTP", 23 : "SMTP”, 443 : "HTTPS"}
In the preceding dictionary, the value of port 23 is "SMTP", but in reality, port number
23 is for telnet protocol. Let's update the preceding dictionary with the following code:

>>> port = {80: "HTTP", 23 : "SMTP", 443 : "HTTPS"}
>>>print(port)
 {80: 'HTTP', 443: 'HTTPS', 23: 'SMTP'}
>>> port[23] = "Telnet"
>>> print(port)
 {80: 'HTTP', 443: 'HTTPS', 23: 'Telnet'}
>>>

Adding an item to the dictionary

Item can be added to the dictionary just by specifying a new key in the square
brackets along with the dictionary. The syntax is as follows:
dict[new_key] = value
Example:

>>> port = {80: "HTTP", 23 : "Telnet"}
>>> port[110]="POP"
>>> print(port)
 {80: 'HTTP', 110: 'POP', 23: 'Telnet'}
>>>

VI Sem BSc- PMCs SSCASC@Tumkur

SP_Python Programming 45

Other dictionary functions:
Similar to lists and tuples, built-in functions available for dictionary.
len()- to find the number of items that are present in a dictionary.
Example:

>>> port = {80: "http", 443: "https", 23:"telnet"}
>>> print(len(port))
 3
>>>

max()-It returns the key with the maximum worth.
Example:

>>> dict1 = {1:"abc",5:"hj", 43:"Dhoni", ("a","b"):"game",
"hj":56}
>>> max(dict1)

('a', 'b')
min()- It returns the dictionary's key with the lowest worth. The syntax of the method
is as follows:
Example:

>>> dict1={1: 'abc', (1, 3): 'kl', 5: 'hj', 43: 'Dhoni', 'hj':
56}
>>> min(dict1)
 1
>>>

FILES

 Files are used to store data permanently. Data used in a program is temporary;

unless the data is specifically saved, it is lost when the program terminates. To

permanently store the data created in a program, you need to save it in a file on a disk

or some other permanent storage device. The file can be transported and can be read

later by other programs.

Python’s standard library has a file class that makes it easy for programmers to make

objects that can store data to, and retrieves data from, disk

In order to read and write into a file, we will use the open() built-in function to open

the file. The open() function creates an file_object object.

The Syntax is:

file_object = open(file_name ,access_mode)

The first argument,file_name, specifies the filename that is to be opened. The second

argument, access_mode, determines in which mode the file has to be opened, that is,

read, write and append.

VI Sem BSc- PMCs SSCASC@Tumkur

SP_Python Programming 46

Mode Description

"r" Opens a file for reading.

"w" Opens a new file for writing. If the file already exists, its old

contents are destroyed.

"a" Opens a file for appending data from the end of the file.

"rb" Opens a file for reading binary data.

"wb" Opens a file for writing binary data.

"r+" Opens a file for reading and writing.

"w+" Opens a file for reading and writing. If the file doesn't exist, then a

new file is created.

Examples:

f = open('myfile.txt', 'r')

Creates a file object named f capable of reading the contents of the text file

named myfile.txt. in current directory.

f = open('myfile.txt', 'w')

Creates and returns a file object named f capable of writing data to the text file

named myfile.txt.

We can also use the absolute path to filename to open the file in Windows, as follows:

f = open(“c:\\pybook\\myfile.txt", "r")

Creates and returns a file object named f capable of reading data to the text file

named myfile.txt in folder name python in c drive

f = open('myfile.txt', 'a')

New data will be appended after the pre-existing data in that file.

Writing text to a file

The 'w' mode creates a new file. If the file already exists, then the file would be

overwritten. We will use the write() function.

Example:

file_input = open("motivation.txt",'w')
file_input.write("Never give up\n")
file_input.write("Rise above hate\n")
file_input.write("No body remember second place")
file_input.close()

VI Sem BSc- PMCs SSCASC@Tumkur

SP_Python Programming 47

Output:

Example: with access mode 'a'.
file_input = open("motivation.txt",'a')
file_input.write("Opens a file for appending data from the end of the
file")
file_input.close()

Output:

Reading Data
After a file is opened for reading data, you can use the read() method to read a

specified number of characters or all characters from the file and return them as a
string, the readline() method to read the next line, and the readlines() method to read
all the lines into a list of strings.
Example to read data

 def main():
 #Open file for input
 infile = open("motivation.txt", "r")
 print("(1) Using read():")
 print(infile.read())#read all data
 infile.close() # Close the input file
 # Open file for input
 infile = open("motivation.txt", "r")
 print("\n(2) Using read(number): ")
 s1 =infile.read(6)#reads character
 print(s1)
 infile.close() # Close the input file
 #Open file for input
 infile = open("motivation.txt", "r")
 print("\n(3) Using readline(): ")
 line1 =infile.readline()#reads line
 print(repr(line1))
 infile.close() # Close the input file

VI Sem BSc- PMCs SSCASC@Tumkur

SP_Python Programming 48

 infile = open("motivation.txt", "r")
 # Open file for input
 infile = open("motivation.txt", "r")
 print("\n(4) Using readlines(): ")
 print(infile.readlines())#prints lines to list
 infile.close() # Close the input file
 main() # Call the main functionample:Read_file.py

EXCEPTION HANDLING

Exception handling enables a program to deal with exceptions and continue its normal
execution.

The run-time exceptions immediately terminate a running program. Rather than
terminating the program’s execution, an executing program can detect the problem
when it arises and possibly execute code to correct the issue or soften it in some way.
This chapter explores handling exceptions in Python.

An error that occurs at runtime is also called an exception. The run-time exceptions
immediately terminate a running program. Python provides a standard mechanism

called exception handling that allows the program to catch the error and prompt the
user to correct the issue or soften it in some way

This can be done using Python’s exception handling syntax.

The syntax for exception handling is to wrap the code that might raise (or throw) an
exception in a try clause, as follows:

try:
<body>
except <ExceptionType>:
<handler>
Here, <body> contains the code that may raise an exception. When an exception

occurs, the rest of the code in <body> is skipped. If the exception matches an
exception type, the corresponding handler is executed. <handler> is the code that
processes the exception.
Example:
 def divide(a,b):

try:
c = a/b
return c
except :
print ("Error in divide function")

 print(divide(10,0))#function call

Output

Error in divide function
None
>>>

VI Sem BSc- PMCs SSCASC@Tumkur

SP_Python Programming 49

Common standard exception classes

Class Meaning

AttributeError Object does not contain the specified instance variable or method

ImportError When import statement fails to find a specified module or name

IndexError A sequence (list, string, tuple) index is out of range

KeyError Specified key does not appear in a dictionary

NameError Specified local or global name does not exist

TypeError Operation or function applied to an inappropriate type

ValueError Operation or function applied to correct type but inappropriate value

ZeroDivisionError Second operand of divison or modulus operation is zero

A try with multiple except clause

A try statement can have more than one except clause to handle different
exceptions.

The statement can also have an optional else and/or finally statement, in a
syntax like this:

try:
<body>
except <ExceptionType1>:
<handler1>
 ...
except <ExceptionTypeN>:
<handlerN>
except:
<handlerExcept>
 else:
<process_else>
finally:
<process_finally>

The multiple excepts are similar to elifs. When an exception occurs, it is checked to
match an exception in an except clause after the try clause sequentially. If a match is
found, the handler for the matching case is executed and the rest of the except clauses
are skipped.

Note that the <ExceptionType> in the last except clause may be omitted. If the
exception does not match any of the exception types before the last except clause, the

<handlerExcept> for the last except clause is executed.

A try statement may have an optional else clause, which is executed if no exception is
raised in the try body.

VI Sem BSc- PMCs SSCASC@Tumkur

SP_Python Programming 50

A try statement may have an optional finally clause, which is intended to define clean-
up actions that must be performed under all circumstances.

Ex : Multiple excepts
 def main():
 try:

number1, number2 = eval(input("Enter two numbers, separated
by

a comma: "))
 result = number1 / number2
 print("Result is", result)
 except ZeroDivisionError:
 print("Division by zero!")
 except SyntaxError:
 print("A comma may be missing in the input")
 except:
 print("Something wrong in the input")
 else:
 print("No exceptions")
 finally:
 print("The finally clause is executed")

main() # Call the main function

Output

VI Sem BSc- PMCs SSCASC@Tumkur

SP_Python Programming 51

The try...finally statement

A try statement may include an optional finally block. Code within a finally block
always executes whether the try block raises an exception or not. A finally block
usually contains “clean-up code” that must execute due to activity initiated in the try

block.

The syntax is as follows:
try:
#run this action first
except:
Run if exception occurs
Finally :
#Always run this code

The order of the statement should be:
try -> except -> else -> finally

Example: to demonstrate finally

def main():
 try:
 num = int(input("Enter the number "))
 re = 100/num
 except:
 print ("Something is wrong")
 else:
 print ("result is ",re)
 finally :
 print ("finally program ends")
main()

Output
Enter the number 15
result is 6.666666666666667
finally program ends
>>>

MULTITHREADED PROGRAMMING

Computer programs are purely executable, binary (or otherwise), which reside on disk.
They do not take on a life of their own until loaded into memory and invoked by the

operating system. A process (sometimes called a heavyweight process) is a program in

execution. Each process has its own address space, memory, a data stack, and other
auxiliary data to keep track of execution. Process switching needs interaction with
operating system. The operating system manages the execution of all processes on the
system, dividing the time fairly between all processes.

Processes can also fork or spawn(give birth) new processes to perform other tasks, but
each new process has its own memory, data stack, etc., and cannot generally share
information unless inter process communication (IPC) is employed.

VI Sem BSc- PMCs SSCASC@Tumkur

SP_Python Programming 52

What Are Threads?

Threads (sometimes called lightweight processes) are similar to processes except that
they all execute within the same process, thus all share the same context. They can be
thought of as "mini-processes" running in parallel within a main process or "main

thread."

A thread has a beginning, an execution sequence, and a conclusion. It has an
instruction pointer that keeps track of where within its context it is currently running.
It can be pre-empted (interrupted) and temporarily put on hold (also known as
sleeping) while other threads are running—this is called yielding.

Multiple threads within a process share the same data space with the main thread
and can therefore share information or communicate with each other more easily than
if they were separate processes. Threads are generally executed in a concurrent
fashion, and it is this parallelism and data sharing that enable the coordination of
multiple tasks.

Naturally, threads are scheduled in such a way that they run for a little bit, then yield
to other threads. Throughout the execution of the entire process, each thread

performs its own, separate tasks, and communicates the results with other threads as
necessary.

If two or more threads access the same piece of data, inconsistent results may arise
because of the ordering of data access. This is commonly known as a race condition.
The thread libraries come with synchronization functions which allow the thread
manager to control execution and access.

Some threads may not be given equal and fair execution time. This is because some
functions block until they have completed.

Multithreading, is the ability of a CPU to manage the use of operating system by

executing multiple threads concurrently. The main idea of multithreading is to achieve

parallelism by dividing a process into multiple threads.

States of Thread

To understand the functionality of threads in depth, we need to learn about the

lifecycle of the threads or the different thread states. Typically, a thread can exist in

five distinct states. The different states are shown below:

New Thread

A new thread begins its life cycle in the new state. But, at this stage, it has not yet

started and it has not been allocated any resources. We can say that it is just an

instance of an object.

Runnable

As the newly born thread is started, the thread becomes runnable i.e. waiting to run.

In this state, it has all the resources but still task scheduler have not scheduled it to

run.

VI Sem BSc- PMCs SSCASC@Tumkur

SP_Python Programming 53

Running

In this state, the thread makes progress and executes the task, which has been

chosen by task scheduler to run. Now, the thread can go to either the dead state or

the non-runnable/ waiting state.

Non-running/waiting

In this state, the thread is paused because it is either waiting for the response of some

I/O request or waiting for the completion of the execution of other thread.

Dead

A runnable thread enters the terminated state when it completes its task or otherwise

terminates.

There are two different kinds of threads:

 Kernel threads
 User-space Threads or user threads

Kernel Threads are part of the operating system, while User-space threads are not
implemented in the kernel, can be seen as an extension of the function concept of a

programming language.

Advantages of Threading:
 Multithreading improve the speed of computation on multiprocessor or multi-core

systems because each processor or core handles a separate thread concurrently.
 Multithreading allows a program to remain responsive while one thread waits for input

and another runs a GUI at the same time. This statement holds true for both

multiprocessor or single processor systems.

 All the threads of a process have access to its global variables. If a global variable
changes in one thread, it is visible to other threads as well. A thread can also have its

own local variables.

Disadvantages of Threading:

 On a single processor system, multithreading wouldn’t impact the speed of
computation. In fact, the system’s performance may downgrade due to the overhead of
managing threads.

 Synchronization is required to avoid mutual exclusion while accessing shared
resources of the process. It directly leads to more memory and CPU utilization.

VI Sem BSc- PMCs SSCASC@Tumkur

SP_Python Programming 54

 Multithreading increases the complexity of the program thus also making it difficult to
debug.

 It raises the possibility of potential deadlocks.
 It may cause starvation when a thread doesn’t get regular access to shared resources.

It would then fail to resume its work.

Creating threads in python

Python provides “Thread” class of threading module to create threads. We can create

threads in the following different ways.

 Creating threads without using a class

 Creating a thread by creating sub class to thread class

 Creating a thread without creating sub class to Thread class

Creating threads without using a class

 In this method,a function is created and its name is passed as target for the thread as

t=Thread(target=function_name,[args=(arg1,arg2,..)

Here t is the object of thread class; the target represents the function on which the

thread will act.the args represents a tuple of arguments which are passed to the function.

the tread is started by calling the start() method as

t.start().

The thread t will execute the function.

Example:

 import time
from threading import Thread

def sleepMe(i):
 print("\nThread %i going to sleep for 5 seconds." % i)
 time.sleep(5)
 print("\nThread %i is awake now." % i)

for i in range(5):
 th = Thread(target=sleepMe, args=(i,))
 th.start()

Output:
Thread 0 going to sleep for 5 seconds.
Thread 1 going to sleep for 5 seconds.
Thread 2 going to sleep for 5 seconds.
Thread 3 going to sleep for 5 seconds.
Thread 4 going to sleep for 5 seconds.
>>>
Thread 4 is awake now.
Thread 2 is awake now.
Thread 1 is awake now.
Thread 3 is awake now.
Thread 0 is awake now.

Creating a thread by creating sub class to thread class

By using Thread class from threading module, we can create our own class as sub class to

Thread class, so that we can inherit the functionality of Thread class. By inheriting Thread

class we can make use all methods of Thread class into sub class. The Thread class has

VI Sem BSc- PMCs SSCASC@Tumkur

SP_Python Programming 55

run() method which is also available to sub class. Every thread will run this method when

it is started. By overriding this run we can make threads run our own run() method.

Example:
from threading import Thread
import time
class MyThread(Thread):
 def run(self):
 for i in range(1,6):
 print("\nThread %i going to sleep for 5 seconds." %
i)
 time.sleep(5)
 print("\nThread %i is awake now." % i)
t1=MyThread()
t1.start()
t1.join()

Output:

Thread 1 going to sleep for 5 seconds.
Thread 1 is awake now.
Thread 2 going to sleep for 5 seconds.
Thread 2 is awake now.
Thread 3 going to sleep for 5 seconds.
Thread 3 is awake now.
Thread 4 going to sleep for 5 seconds.
Thread 4 is awake now.
Thread 5 going to sleep for 5 seconds.
Thread 5 is awake now.

Creating a thread without creating sub class to Thread class
 We can ceate an independent class say MYThread that does not inherit from
Thread class. Then create object of MyThread .Next step is to create a thread by
creating object to Thread class and specifying the method of the My thread class as its
target as
T1=Thread(target=obj.Sleep,args())
Example:
from threading import Thread

import time
class MyThread:
 def Sleep(self):
 for i in range(1,6):
 print("Thread %i going to sleep for 5 seconds." % i)
 time.sleep(5)
 print("Thread %i is awake now." % i)
obj=MyThread()
t1=Thread(target=obj.Sleep())
t1.start()

Output:
Thread 1 going to sleep for 5 seconds.
Thread 1 is awake now.
Thread 2 going to sleep for 5 seconds.

VI Sem BSc- PMCs SSCASC@Tumkur

SP_Python Programming 56

Thread 2 is awake now.
Thread 3 going to sleep for 5 seconds.
Thread 3 is awake now.
Thread 4 going to sleep for 5 seconds.
Thread 4 is awake now.
Thread 5 going to sleep for 5 seconds.

 Thread 5 is awake now

Thread synchronization

It is defined as a mechanism which ensures that two or more concurrent threads do
not simultaneously execute some particular program segment known as critical
section.
Critical section refers to the parts of the program where the shared resource is
accessed.
When a thread is already acting on an object, preventing any other thread from acting
on the same object is called is called thread synchronization. It is implemented using
the following techniques:

 Locks

 Semaphores.

Locks are used to lock objects on which the thread is acting, after completion of
execution, it will unlock the object and comes out.
Locks is created by creating object of class Lock as shown below.
L=Lock().
To lock the object,we should use the acquire() as L.axquire().
To unlock or release the object,release() method is used as L.release()

VI Sem BSc- PMCs SSCASC@Tumkur

SP_Python Programming 57

Chapter-3

Object Oriented Programming

 The concept of object-oriented programming was seen to solve many problems, which

procedural programming did not solve. In object-oriented programming, everything is
just like a real-world object. In the real world, everything is an object. An object can
have state and behavior. An object in the real world can communicate with another
object.
For example, a dog object in the real world has state and behavior. OOPS is based on
four pillars. They are:
Polymorphism
Inheritance
Abstraction
Encapsulation
Class and Objects

Key concepts

Class: A class defines the properties and behaviors for objects. Class is considered as
a blueprint for object creation. It provides a template for creating an object and
specifying its behavior through means of methods and state through means of variable
instance name.
Objects: An object represents an entity in the real world that can be distinctly
identified. An object has a unique identity, state, and behavior or attributes. They can
be considered as an instance of a class. For example, a student, a desk, a circle, a
button, and even a loan can all be viewed as objects.
Inheritance: In object-oriented programming, the child class can inherit many
properties from the parent class. Here, the child class can use an existing method or
behavior, which the parent class has defined and use them accordingly in their class.
Inheritance can be a single inheritance or multiple inheritance. Single inheritance, as
the name suggests, refers to only one parent, while multiple inheritance refers to
inheriting the property from multiple parents.
Polymorphism: In OOPs, an object can have many forms through means of different
attributes. To simplify, in our case, we can understand it by methods with the same
name but having different outputs.
Abstraction: Here, we hide the necessary details and are only interested in showing
the relevant details to the other proposed user.
Encapsulation: This refers to hiding the necessary methods and their relevant

details from the outside world. A class can be treated as a best example, which
provides encapsulation to the methods and relevant instances.

Creating a class
Creating a class in Python is quite easy. Refer to the following syntax:
class <class name >(<parent class name>):#statements must be indented

 <method definition-1>
 <method definition-n>

Methods
The class functions are known by common name, methods. In Python, methods are
defined as part of the class definition and are invoked only by an instance. To call a

VI Sem BSc- PMCs SSCASC@Tumkur

SP_Python Programming 58

method we have to : (1) define the class (and the methods), (2) create an instance, and
finally, (3) invoke the method from that instance. Here is an example class with a
method:

class MyMethod:#define the class
 def display(self): # define the method
 print ('Welcome! to class MyMethod')
obj=MyMethod()
obj.display()
self is a parameter that references the object itself. Using self, you can access

object’s members in a class definition.
The self is a parameter that references the object itself. Using self, you can

access object’s members in a class definition. The self argument, which must be
present in all method invocations. That argument, represents the instance object, is
passed to the method implicitly by the interpreter when you invoke a method via an
instance.

For example, you can use the syntax self.x to access the instance variable x and
syntax self.m1() to invoke the instance method m1 for the object self in a class .

To invoke the method we have to instantiate the class and call the method as

follows.
>>> myObj = MyMethod() # create the instance

>>> myObj.display() # now invoke the method

Constructor (The __init__ method)
Here __init__ works as the class's constructor. When a user instantiates the class, it
runs automatically. A class provides a special method, __init__. This method, known
as an initializer, is invoked to initialize a new object’s state when it is created. An
initializer can perform any action, but initializers are designed to perform initializing
actions, such as creating an object’s data fields with initial values.

Python uses the following syntax to define a class:
class ClassName:
initializer
methods

You can access the object’s data fields and invoke its methods by using the dot
operator (.), also known as the object member access operator.

Example: Construct1.py
import math
class Circle:
 # Construct a circle object
 def __init__(self, radius = 1):
 self.radius = radius
 def getPerimeter(self):
 return 2 * self.radius * math.pi
 def getArea(self):
 return self.radius * self.radius * math.pi
 def setRadius(self, radius):
 self.radius = radius
c = Circle(5)
print(c.radius)

VI Sem BSc- PMCs SSCASC@Tumkur

SP_Python Programming 59

print(c.getPerimeter())
print(c.getArea())
c.setRadius(6)
print(c.radius)
print(c.getPerimeter())
print(c.getArea())

Output:

5
31.41592653589793
78.53981633974483
6
37.69911184307752
113.09733552923255

Example: Construct2.py
class Car():
 """A simple attempt to represent a car."""
 def __init__(self, make, model, year):
 """Initialize attributes to describe a car."""
 self.make = make
 self.model = model
 self.year = year
 def get_name(self):
 """Return a neatly formatted descriptive name."""
 name = str(self.year) + ' ' + self.make + ' ' + self.model
 return name
my_new_car = Car('audi', 'a4', 2016)
print(my_new_car.get_name())

Output:
2016 audi a4

Destructor (__del__() Method)

Like constructor, there is an equivalent destructor special method called

__del__(). However, due to the way Python manages garbage collection of objects, this

function is not executed until all references to an instance object have been removed.

Destructors in Python are methods which provide special processing before instances

are de_allocated and are not commonly implemented since instances are rarely

de_allocated explicitly.

Example:Destructor.py
class myClass:
 count = 0 # use static data for count
 def __init__(self): # constructor, incr. count
 myClass.count = myClass.count + 1
 def __del__(self): # destructor, decr. count
 myClass.count = myClass.count - 1
 def howMany(self): # return count
 return myClass.count

VI Sem BSc- PMCs SSCASC@Tumkur

SP_Python Programming 60

a = myClass()
b = myClass()
print(b.howMany())
print(a.howMany())
del b
print(a.howMany())
#print(b.howMany())Prints error after deletion of object b

Output:
 2
 2
 1
Class variables

Class variables are the ones, which are sharable among all the instances of the

class. The class variable must be the same for all the instances.

Class Attributes
An attribute is a data or functional element which belongs to another object

and is accessed via the familiar dotted-attribute notation. Some Python types such as

complex numbers have data attributes (real and imag), while others such as lists and
dictionaries have methods (functional attributes).

Class Data Attributes
Data attributes are simply variables of the class we are defining. They can be used like
any other variable in that they are set when the class is created and can be updated
either by methods within the class or elsewhere in the main part of the program.
Such attributes are better known to OO programmers as static members, class
variables, or static data. They represent data that is tied to the class object they
belong to and are
independent of any class instances.

Class Methods Attributes

A method, in the class is simply a function defined as part of a class definition (thus
making methods class attributes). This means that Method applies only to objects
(instances) of Class type. Note is tied to its instance because invocation requires both
names in the dotted notation:

Example:Class_var.py

class Tumkur_org():
 mul_num = 1.20 #class variable
 def __init__(self,first,last,pay):
 self.f_name = first # Class Data Attributes
 self.l_name = last
 self.pay_amt = pay
 self.full_name = first+" "+last
 def make_email(self): # Class Method Attributes
 return self.f_name+ "."+self.l_name+"@gmail.com"
 def increment(self):
 self.pay_amt = int(self.pay_amt*self.mul_num)
 return self.pay_amt
obj1 = Tumkur_org('Hari', 'Das', 60000)

VI Sem BSc- PMCs SSCASC@Tumkur

SP_Python Programming 61

obj2 = Tumkur_org('Mahesh', 'Span',70000)
print(obj1.full_name)# dotted notation
print(obj1.make_email())
print(obj1.increment())
print(obj2.full_name)
print(obj2.make_email())
print(obj2.increment())

Output:

Hari Das
Hari.Das@gmail.com
72000
Mahesh Span
Mahesh.Span@gmail.com
84000

Inheritance

Inheritance in Python is based on similar ideas used in other object oriented
languages like Java, C++ etc. Inheritance allows us to inherit methods and attributes
of the parent class. By inheritance, a new child class automatically gets all of the
methods and attributes of the existing parent class. The syntax is given as follows:

class BaseClass(object):
pass

class DerivedClass(BaseClass):
<statement-1>
.
. .
<statement-N>

The BaseClass is the already existing (parent) class, and the DerivedClass is the new
(child) class that inherits (or subclasses) attributes from BaseClass.

OR
Inheritance enables you to define a general class (a superclass) and later extend it to
more specialized classes (subclasses).

Example:Simple_Inheritance.py

class Rectangle():
 def __init__(self, w, h):
 self.w = w
 self.h = h
 def area(self):
 return self.w * self.h

class Square(Rectangle):
 def __init__(self, l,b):
 # call parent constructor.
 super().__init__(l, b)
 self.L=l
 self.B=b

VI Sem BSc- PMCs SSCASC@Tumkur

SP_Python Programming 62

 def perimeter(self):
 return 2 * (self.L + self.B)
sqr=Square(5,6)
print(sqr.area())
print(sqr.perimeter())

The Square class will automatically inherit all attributes of the Rectangle class

as well as the object class.

super() refers to the superclass. Using super() we avoid referring the superclass

explicitly. super() is used to call the __init__() method of Rectangle class, essentially

calling any overridden method of the base class. When invoking a method using

super(), don’t pass self in the argument.

Types of Inheritance:

 Single Inheritance

 Multiple Inheritances

In Multiple inheritance a subclass inherited from more than one parent class and is

able to access functionality from both of them.

Syntax:

class A:

 # variable of class A

 # functions of class A

class B:

 # variable of class A

 # functions of class A

class C(A, B):

 # class C inheriting property of both class A and B

 # add more properties to class C

 Multilevel Inheritance

 class A:

 # properties of class A

 class B(A):

 # class B inheriting property of class A

 # properties of class B

 class C(B):

 # class C inheriting property of class B

 # class C also inherits properties of class A

 # properties of class C

VI Sem BSc- PMCs SSCASC@Tumkur

SP_Python Programming 63

Overriding methods

Overriding methods allows a user to override the parent class method. That is use the

same method both in base and child class. The name of the method must be the same

in the parent class and the child class with different implementations.

Example:classover1.py:

class A():
 def sum1(self,a,b):
 print("In class A")
 c = a+b
 return c
class B(A):
 def sum1(self,a,b):
 print("In class B")
 c= a*a+b*b
 return c
a_obj=A()
print(a_obj.sum1(4,5))
b_obj = B()
print(b_obj.sum1(4,5))

Output:
In class A
9
In class B
41

 In the preceding example, classes A and B both have the same method sum1() with

different implementations.

Namespace
A namespace is mapping from names to objects. Examples are the set of built-in
names (containing functions that are always accessible for free in any Python
program), the global names in a module, and the local names in a function. Even the
set of attributes of an object can be considered a namespace.
The namespaces allow defining and organizing names with clarity, without overlapping
or interference.
For example, the namespace associated with that book we were looking for in the

library can be used to import the book itself, like this:
from library.second_floor.section_x.row_three import book
We start from the library namespace, and by means of the dot (.) operator, we navigate
that namespace. Within this namespace, we look for second_floor, and
again we navigate with dot(.) operator. We then walk into section_x, and finally
within the last namespace, row_three, we find the name we were looking for: book.

Regular Expressions

● The Regular Expression Module A regular expression is a compact notation for
representing a collection of strings. What makes regular expressions so powerful is
that a single regular expression can represent an unlimited number of strings—

VI Sem BSc- PMCs SSCASC@Tumkur

SP_Python Programming 64

providing they meet the regular expression’s requirements. Regular expressions (which
we will mostly call “regexes” from now on) are defined using a mini-language that is
completely different from Python—but Python includes the re module through which

we can seamlessly create and use regexes.★Regexes are used for five main purposes:

• Parsing: identifying and extracting pieces of text that match certain criteria—regexes
are used for creating ad hoc parsers and also by traditional parsing tools

• Searching: locating substrings that can have more than one form, for example,
finding any of “pet.png”, “pet.jpg”, “pet.jpeg”, or “pet.svg” while avoiding “carpet.png”
and similar

• Searching and replacing: replacing everywhere the regex matches with a string, for
example, finding “bicycle” or “human powered vehicle” and replacing either with “bike”

• Splitting strings: splitting a string at each place the regex matches, for example,
splitting everywhere colon-space or equals (“: ” or “=”) occurs

• Validation: checking whether a piece of text meets some criteria, for example,
contains a currency symbol followed by digits

The Python package
Python modules are a single file, whereas a Python package is a collection of modules.
A
package is a directory that contains Python modules. A package is a module that
contains other modules. Some or all of the modules in a package may be sub
packages, resulting in a hierarchical tree-like structure.

A namespace is mapping from names to objects. Examples are the set of built-in
names (containing functions that are always accessible for free in any Python
program), the global names in a module, and the local names in a function. Even the
set of attributes of an object can be considered a namespace.

The namespaces allow defining and organizing names with clarity, without overlapping
or interference.

For example, the namespace associated with that book we were looking for in the
library can be used to import the book itself, like this:

from library.second_floor.section_x.row_three import book

We start from the library namespace, and by means of the dot (.) operator, we navigate
that namespace. Within this namespace, we look for second_floor, and

again we navigate with dot(.) operator. We then walk into section_x, and finally

within the last namespace, row_three, we find the name we were looking for: book.

VI Sem BSc- PMCs SSCASC@Tumkur

SP_Python Programming 65

Chapter 4

DATABASES

TALKING TO THE DATABASE WITH PYTHON

The RDBMS

RDBMS stands for Relational Database Management System. RDBMS is the basis for
SQL, and for all modern database systems like MS SQL Server, IBM DB2, Oracle,
MySQL, and Microsoft Access.

A (RDBMS) is a database management system that is based on the relational model as
introduced by E. F. Codd. In Relational database model, a table is a collection of data
elements organised in terms of rows and columns. Table is the simplest form of data
storage. RDBMS is used to manage Relational database. Relational database is a
collection of organized set of tables related to each other, and from which data can be
accessed easily.

What makes up a database? The main components of an RDBMS are:
a. The database server
b. The database
c. Tables
d. Records and fields
e. Primary key
f. Schema

The database server, the database, and a table.

The Database Server

 The database server is the actual server process running the databases. It
controls the storage of the data, grants access to users, updates and deletes records,
and communicates with other servers. The database server is normally on a dedicated
host computer, serving and managing multiple clients over a network, but can also be
used as a standalone server on the local host machine to serve a single client (e.g., you

VI Sem BSc- PMCs SSCASC@Tumkur

SP_Python Programming 66

might be the single client using MySQL on your local machine, often referred to as
“local host” without any network connection at all).
The requests to the database server can also be made from a program that acts on
behalf of a user making requests from a Web page. We can connect to the database
server from a PHP program using PHP built-in functions to make requests to the

MySQL database server.

The database
A database is a collection of related data elements, usually corresponding to a specific
application. The databases are listed as “mysql,” “northwind,” “phpmyadmin,” and
“test.”

The tables
Each database consists of two-dimensional tables. In fact, a relational database stores
all of its data in tables. All operations are performed on the table, which can then
produce other tables, and so on. During designing a database first we create tables
and relate these tables to one another in some way. For example, a typical database
for an organization might consist of tables for customers, orders, and products and all

these tables are related to one another.

The records and fields
 A table has a name and consists of a set of rows and columns. It resembles a
spread-sheet. Where each row, also called a record. Each table in a database contains
zero or more records. The vertical columns, also called fields or attributes and has
names. All rows from the same table have the same set of columns. Remember, a
relational database manipulates only tables and the result of all operations are also
tables. You can view the database itself as a set of tables. You can also perform a
number of other operations on tables and also between two tables by treating them as
sets: You can join information from two tables, make Cartesian products of the tables,
get the intersection between two tables, add one table to another, and so on. SQL
allows you to “talk” to a database. A data type can be a number, a character, a date, a
time stamp, and so on. The terms “row” and “record” are often interchangeable, as are
“column” and “field.

The primary key and indexes
 A primary key is a unique identifier for each record. These identifiers are unique.
In the world of database tables, we call the unique identifier a primary key. Although it
is a good idea to have a primary key, not every table has one. The primary key is
determined when the table is created

The database schema
 Database design is a science and requires understanding how the relational
model is implemented. The term database schema, which refers to the structure of the
database. It describes the design of the database similar to a template or blueprint; it
describes all the tables, and their layout, but does not contain the actual data in the
database.

Connecting to the database

VI Sem BSc- PMCs SSCASC@Tumkur

SP_Python Programming 67

 To communicate with the MySQL server, you will need a language, and SQL
(Structured Query Language) is the language of choice for most modern multiuser,
relational databases. SQL provides the syntax and language constructs needed to talk
to relational databases in a standardized, cross-platform structured way. We discuss
how to use the SQL language.

 The version of SQL used by MySQL follows the ANSI (American National
Standards Institute) standard, meaning that it must support the major keywords (e.g.,
SELECT, UPDATE, DELETE, INSERT, WHERE, etc.) as defined in the standard. As you
can see by the names of these keywords, SQL is the language that makes it possible to
manipulate the data in a database.
 First we have to install a database server and run it. There are a number of client
applications available to connect to the database server, the most popular and most
widely available being the mysql command-line client and also PhpMyAdmin in case of
XAMP or WAMP. Regardless of the type of client you choose, you will always need to
specify the username, and the host we are connecting to. To connect to a database
using the client, we have to enter information similar to the following line
mysql userrootpassword =my_password host=localhost.
Once you are successfully connected, you will get the mysql> prompt. This means we

are connected to the MySQL database server and not to local computer’s operating
system.

MySQL data types

When creating a table in database, the type and size of each field must be defined. A
field is similar to a PHP variable except that it can store only the specified type and
size of data in a given field.
 MySQL supports three main groups of data types: numeric, date/time, and string.
For full details see the MySQL manual at http://dev.mysql.com/doc/.

Numeric data types
You can store numbers in MySQL in many ways, as shown by the following table.
Choose the data type most suited for the type of numbers needed to store in table.

Type Max value (signed/unsigned)

TINYINT – 127 / 255

SMALLINT – 32,767 to 65,535 /0 to 65535 if UNSIGNED

MEDIUMINT
– 8,388,607 / 16,777,215 or

0 to 16777215 if UNSIGNED

INT – 2,147,483,647 / 4,294,967,295

BIGINT – 9,223,372,036,854,775,807 to 18,446,744,073,709,551,615

FLOAT
Smallest non - zero value: ± 1.176 × 10– 38 ;

largest value: ± 3.403 × 10 38

FLOAT Smallest non - zero value: ± 2.225 × 10 – 308 ;

http://dev.mysql.com/doc/

VI Sem BSc- PMCs SSCASC@Tumkur

SP_Python Programming 68

largest value: ± 1.798 × 10 308

DECIMAL Same as DOUBLE , but fixed – point rather than floating - point.

BIT 0 or 1

Date and time data types
As with numbers, we can choose from a range of different data types to store dates
and times, depending on whether we want to store a date only, a time only, or both:

Date/Time Data Type Description & Allowed Range of Values

DATE Date 1 Jan 1000 to 31 Dec 9999

DATETIME
Date and time Midnight, 1 Jan 1000 to 23:59:59, 31 Dec

9999

TIMESTAMP

Timestamp 00:00:01, 1 Jan 1970 to 03:14:07, 9 Jan

2038, UTC

(Universal Coordinated Time)

TIME Time – 838:59:59 to 838:59:59

YEAR Year 1901 to 2155

String data types
 MySQL allows storing text or binary strings of data in many different ways, as shown
in the following table:

String Data Type Description Allowed Lengths

CHAR(n) Fixed - length string of n characters 0 – 255 characters

VARCHAR(n)
Variable - length string of up to n

characters
0 – 65535 characters

BINARY(n)
Fixed - length binary string of n

bytes
0 – 255 bytes

VARBINARY(n)
Variable - length binary string of up

to n bytes
(0 – 65535) bytes

MEDIUMTEXT Medium - sized text field
0 – 16777215

characters

VI Sem BSc- PMCs SSCASC@Tumkur

SP_Python Programming 69

LONGTEXT Large text field
0 – 4294967295

characters

BLOB Normal - sized Binary Large OBject 0 – 65535 bytes

MEDIUMBLOB Medium - sized BLOB
0 – 16777215 bytes

(16MB)

Introduction to SQL statements

 The standard language for communicating with relational databases is SQL, the

Structured Query Language. SQL is an ANSI (American National Standards Institute)

standard computer language, designed to be as close to the English language as

possible, making it an easy language to learn. Popular database management systems

such as Oracle, Sybase, and Microsoft SQL Server, all use SQL.To actually work with

databases and tables, we SQL statements. Commonly used statements include:

 These SQL commands are mainly categorized into three categories as discussed
below:

Data Definition Language (DDL):
 DDL or Data Definition Language actually consists of the SQL commands that can
be used to define the database schema. It simply deals with descriptions of the
database schema and is used to create and modify the structure of database objects in
database.

Examples of DDL commands:

CREATE: is used to create the database or its objects (like table, index, function,
views, store procedure and triggers).
DROP: is used to delete objects from the database.
ALTER: is used to alter the structure of the database.
TRUNCATE: is used to remove all records from a table, including all

spaces allocated for the records are removed.
COMMENT: is used to add comments to the data dictionary.
RENAME: is used to rename an object existing in the database.

Data Manipulation Language (DML):
 The SQL commands that deals with the manipulation of data present in database
belong to DML or Data Manipulation Language and this includes most of the SQL
statements.

Examples of DML:

VI Sem BSc- PMCs SSCASC@Tumkur

SP_Python Programming 70

SELECT: Is used to retrieve data from the database.
INSERT: Is used to insert data into a table.
UPDATE: Is used to update existing data within a table.
DELETE: Is used to delete records from a database table.

Data Control Language (DCL):
 DCL includes commands such as GRANT and REVOKE which mainly deals with
the rights, permissions and other controls of the database system.

Examples of DCL commands:

GRANT: Gives user’s access privileges to database.

REVOKE: Withdraw user’s access privileges given by using the GRANT command.

COMMIT: Commits a Transaction.

ROLLBACK: Rollbacks a transaction in case of any error occurs.

SAVEPOINT: Sets a save point within a transaction.

SET TRANSACTION: Specify characteristics for the transaction.

Creating a table
 Tables are where we actually store your data. To start with, to create a very simple
table, fruit, containing three fields: id (the primary key), name (the name of the fruit),
and color (the fruit’s color).

 The first thing to do is select the database just created. Once you a database are
selected, any database manipulation commands entered works on that database. Type
the following:
USE mydatabase;
Press Enter, and we see:
Database changed
mysql >
Now to create table. Type the following at the mysql > prompt:

mysql > CREATE TABLE fruit (id SMALLINT UNSIGNED NOT NULL

 AUTO_INCREMENT, name VARCHAR(30) NOT NULL,

 color VARCHAR(30) NOT NULL, PRIMARY KEY (id));

 After successful execution of command we get message:
Query OK, 0 rows affected (0.06 sec)

To see a list of tables in the database, use the SHOW TABLES command:
mysql > SHOW TABLES;

VI Sem BSc- PMCs SSCASC@Tumkur

SP_Python Programming 71

To see the structure of newly created table use EXPLAIN command, as follows:
mysql > EXPLAIN fruit;

Adding data to a table
Now try adding some data into fruit table. To add a new row to a table, you use the

SQL INSERT statement. In its basic form, an INSERT statement looks like this:

INSERT INTO table VALUES (value1 , value2 , ...);

This inserts values into each of the fields of the table, in the order that the fields were

created. To insert a row of partial data, use:

INSERT INTO table (field1 , field2 , ...) VALUES (value1 , value2 , ...);

So you can add three rows to the fruit table by inserting data into just the name and

color fields (the id field will be filled automatically):

mysql >INSERT INTO fruit(name, color)
 VALUES(‘banana’, ‘yellow’);
 Query OK, 1 row affected (0.06 sec)
mysql >INSERT INTO fruit (name, color)
 VALUES(‘tangerine’, ‘orange’);
 Query OK, 1 row affected (0.00 sec)
mysql > INSERT INTO fruit (name, color)
 VALUES (‘plum’,‘purple’);
 Query OK, 1 row affected (0.00 sec)
 mysql >

Reading data from a table

To read data in SQL, we create a query using the SELECT statement. To retrieve a list
of all the data in your fruit table, you can use: Typical form of a MySQL SELECT
statement, which retrieves records from a table. Operations performed with SELECT

are known as queries (hence the name “Structured Query Language”):
SELECT field1 , field2 , ... , fieldn FROM table WHERE condition.
To retrieve a list of all the data in fruit table, we can use:
mysql > SELECT * from fruit;

VI Sem BSc- PMCs SSCASC@Tumkur

SP_Python Programming 72

 To retrieve a selected row or rows, we need to introduce a WHERE clause at the end

of the SELECT statement. A WHERE clause filters the results according to the

condition in the clause. Here is simple WHERE clauses:

mysql > SELECT * from fruit WHERE name = ‘banana’;

CONNECTING PYTHON WITH DATABASE

 Install MySQL Connector Python using pip.

 Use the mysql.connector.connect() method of MySQL Connector Python with

required parameters to connect MySQL.

 Use the connection object returned by a connect() method to create a cursor

object to perform Database Operations.

 The cursor.execute() to execute SQL queries from Python.

 Close the Cursor object using a cursor.close() and MySQL database connection

using connection.close() after your work completes.

 Catch Exception if any that may occur during this process.

Creating a connection object

Now, we are ready to issue commands.
Interacting with the database
Many SQL commands can be issued using a single function as:
cursor.execute()
closing the database
After all changes have been committed, we can then close the database:
mydb.close()

Python MySQL Database connection program
import mysql.connector

 This line imports the MySQL Connector Python module in to program and we
can use this module’s API to connect MySQL.

from mysql.connector import Error
 mysql connector Error object is used to show us an error when we failed to

connect Databases or if any other database error occurred while working with
the database. Example ER_ACCESS_DENIED_ERROR when username or
password is wrong.

mysql.connector.connect()
 Using this function we can connect the MySQL Database, this function accepts

four required parameters: Host, Database, User and Password that we already
discussed.

VI Sem BSc- PMCs SSCASC@Tumkur

SP_Python Programming 73

 connect() function establishes a connection to the MySQL database from
python application and returns a MySQLConnection object. This process
automates logging into the database and selecting a database to be used. Then
we can use MySQLConnection object to perform various operation on the
MySQL Database.

 Connect () function can throw an exception, i.e. Database error if one of the
required parameters are wrong. For example, if you provide a database name
that is not present in MySQL, then Python application throws an exception.
So check the arguments that you are passing to this function.

The syntax for calling the connect() function and assigning the results to a

 variable is as follows:
[variable] = MySQLdb.connect([hostname], [username], [password],
 [database name])
We can assign values these variables as shown but it is not required, but it is good
practice until you get used to the format of the function call. So we can use the
following format to call the connect() function:
[variable] = MySQLdb.connect(host="[hostname]", user="[username]",
 passwd="[password]", db="[database name]")

OR (in case of mysql DB)
[variable] = mysql.connector.connect (host="[hostname]",
 user="[username]", passwd="[password]", db="[database name]")

conn.is_connected()
 is_connected() is the function of the MySQLConnection class through which we

can verify is our python application connected to MySQL.

Creating a cursor object:

Using a cursor object, we can execute SQL queries. The MySQL Cursor class
instantiates objects that can execute operations such as SQL statements.
Cursor objects interact with the MySQL server using a MySQLConnection object.

After the connection object is created, cursor object allows to interact with the
database. The point of a cursor is to mark place and to allows to issue commands to
the computer. A cursor in MySQL for Python serves as a Python-based proxy for the
cursor in a MySQL shell session, where MySQL would create the real cursor for us if
we logged into a MySQL database.
 To create the cursor, we use the cursor() method of the MySQLdb.connections

object we created for the connection. The syntax is as follows:
[cursor name] = [connection object name].cursor()

Example:
cursor = mydb.cursor()

cursor.close()

 Using cursor’s close method we can close the cursor object. Once we close the
cursor object, we can not execute any SQL statement.

 connection.close()
 At last, we are closing the MySQL database connection using a close() function

of MySQLConnection class.

VI Sem BSc- PMCs SSCASC@Tumkur

SP_Python Programming 74

Some of Python Database functions

db.close() Closes the connection to the database (represented by

the db object which is obtained by calling a connect()

function)

db.commit() Commits any pending transaction to the database;

does

 nothing for databases that don’t support transactions

db.cursor() Returns a database cursor object through which

queries can

 be executed

db.rollback() Rolls back any pending transaction to the state that

existed

 before the transaction began; does nothing for

databases that don’t support transactions

db.arraysize The (readable/writable) number of rows that

fetchmany() will return if no size is specified

db.close() Closes the cursor, c; this is done automatically when

the cursor goes out of scope

db.description() A read-only sequence of 7-tuples (name, type_code,

display_size, internal_size, precision, scale, null_ok),

describing each successive column of cursor c

db.execute

(sql,params)

Executes the SQL query in string sql, replacing each

placeholder with the corresponding parameter from

the params sequence or mapping if given

db.executemany

(sql,seq_of_params)

Executes the SQL query once for each item in the

seq_of_params sequence of sequences or mappings;

this method should not be used for operations that

create result sets (such as SELECT statements)

db.fetchall() Returns a sequence of all the rows that have not yet

been fetched (which could be all of them)

db.fetchmany(size) Returns a sequence of rows (each row itself being a

VI Sem BSc- PMCs SSCASC@Tumkur

SP_Python Programming 75

sequence); size defaults to c.arraysize

db.fetchone() Returns the next row of the query result set as a

sequence, or None when the results are exhausted.

Raises an exception if there is no result set.

db.rowcount() The read-only row count for the last operation

(e.g.,SELECT, INSERT, UPDATE, or DELETE) or -1 if

not available or not applicable

Example:
import mysql.connector
conn=mysql.connector.connect(host='localhost',database='test',user='ro
ot',password='')
cur=conn.cursor()
str='''CREATE TABLE IF NOT EXISTS examples(id int(11) NOT NULL
AUTO_INCREMENT, description varchar(45), PRIMARY KEY (id))'''
cur.execute(str)
str2='INSERT INTO examples(description) VALUES ("Hello World")'
cur.execute(str2)
str3='INSERT INTO examples(description) VALUES ("TUMKUR")'
cur.execute(str3)
conn.commit()
cur.execute("Select * from examples")
row=cur.fetchall()
print("total row=",cur.rowcount)
for r in row:
 print(r)
cur.close()
conn.close()

Output:
total row= 2
(1, 'Hello World')
(2, 'TUMKUR')
>>>

VI Sem BSc- PMCs SSCASC@Tumkur

SP_Python Programming 76

Chapter-5
Graphical User Interface

The user can interact with an application through graphics or an image is called GUI [Graphical
User Interface]. Here the user need not remember any commands. User can perform task just

by clicking on relevant images.
Advantages:

1. It is user friendly.

2. It adds attraction and beauty to any application by adding pictures, colors, menus,
animation.

3. It is possible to simulate the real life objects using GUI.

4. GUI helps to create graphical components like push button, radio button, check box,
text box, menus etc.,

GUI in Python:

 Python offers tkinter module to create graphical programs. The tkinter represents ‘toolkit

interface’ for GUI. This is a interface for Python programmers that enable them to the classes

of TK module of TCL/TK [Tool Command Language]. TCL language use TK[Tool Kit] language to

generate graphics.

General steps involved in basic GUI programs:
1. Create a root Window: The root window is the top level window that provides

rectangular space on the screen where we can display text, color, images, etc.,

 First import tkinter module

from tkinter import *

 root=Tk() # create root window object.

2. Create a Canvas / Frame : Canvas and frame are child windows in the root window.

C=Canvas(root, bg=‘blue’, height=500,width=400,cursor=‘pencil’)
Cursors are – circle, hand1, hand2, heart, pencil, plus, mouse, star, watch etc…

3. Create Widgets – Components :
For Canvas – create line, circle, rectangle, any geometric objects
For Frame – buttons, text box, list , check box etc…

4. Create a Event Handler
Write the function for corresponding event.

WAP to draw line, oval, polygon, rectangle and text
from tkinter import *
root=Tk()
root.title ("My Window")
#root.geometry ("400x300")
c=Canvas(root,bg="blue",height=700,width=1200,cursor='pencil')
id=c.create_line(50,50,200,50,200,150,width=4,fill="white")
id=c.create_oval(100,100,400,300,width=2,fill="yellow" , activefill="blue")
id=c.create_polygon(10,10,200,200,300,200,width=3,fill="green",outline="red",activefill="Pink")
id=c.create_rectangle(500,200,700,600,width=2,fill="gray",outline="yellow",activefill="green")
fnt=('Times',40,'bold italic underline')
id=c.create_text(500,100,text="Python Graphics", font=fnt, fill="White", activefill="red")
c.pack()
root.mainloop()

VI Sem BSc- PMCs SSCASC@Tumkur

SP_Python Programming 77

Frame: A frame is similar to canvas, but it can hold components of forms. To create a frame,
we can create an object of Frame class as :

F= Frame(root, height=400,width=500,bg=“yellow”,cursor=“cross”
Here, ‘F’ is an object of class Frame, the options height and width reprsents the area of frame
in pixels, ‘bg’ represents the back ground color to be displayed and ‘cursor’ indicates the type
of the cursor to be displayed in the frame.

Once the frame is created, it should be added to the root window using the pack() method.

Widgets/ form elements: Widgets is a GUI component that is displayed on the screen and
can perform a task as designed by the user. The widgets are:

1. Button 2. Label 3. Text box 4. Message
5. Checkbox 6. List box 7. Option button 8. Scroll bars 9. Menus

Steps to create a Widgets
1. Create a widget object

B=button(f, text=“Submit”)
2. Define the event performed by the widget

def buttonClick(self) :

 print(“You have clicked submit button”)

3. Clicking event should be linked with the callback handler

B.bind(‘<Button-1>’, buttonClick)
4. Call event loop

root.mainloop()

1. Button: A push button is a component that performs some action when clicked. These
buttons are created as objects of Button class as,

b=Button(f, text="Ok", width=15,height=3, bg="yellow", fg="blue")

Here, ‘b’ is the object of Button class, ‘f’ represents the frame for which the button is created as a
child. The ‘text’ option represents the text to be display on the button, width and height
represents the size of the button, ‘bg’ represents the background color and ‘fg’ represents the
fore ground color of the button,
b.bind("<Button-1>", buttonClick)

We link the mouse left button with the buttonClick()method using bind()method.

2. Text: A text widget is same as label. But text widget has several options and can
display multiple lines of text in different colors and fonts. It is possible to insert text into

a text widget, modify it or delete it. We can also display images in the text widget. A
text is created as an object of Text class as,

t=Text(f,width=20, height=3, font=('Times',20,'italic'), fg='blue', bg="yellow",

wrap=WORD)
Here, ‘t’ is the object of Text class, ‘f’ represents the frame for which the text is created as a child.
The width and height represents the size of the text box, ‘bg’ represents the background color
and ‘fg’ represents the fore ground color of the text, ‘font ‘ represents a tuple that contains font
name, size and style. The ‘wrap’ represents the text information can be align with in the text box.

3. Label: A label represents the constant text that is displayed in the frame or container. A
label can display one or more lines of text that cannot be modified. A label is created as

an object of Label class as,

l=Label(f, text=" Label Demo",width=25,height=3, font=('Times',14,'bold'),

fg='blue',bg='yellow')

VI Sem BSc- PMCs SSCASC@Tumkur

SP_Python Programming 78

Here, ‘l’ is the object of Label class, ‘f’ represents the frame for which the button is created as a
child. The ‘text’ option represents the text to be display on the Label box, width and height
represents the size of the label, ‘bg’ represents the background color and ‘fg’ represents the fore
ground color of the label, ‘font ‘ represents a tuple that contains font name, size and style.

4. Check button: Check buttons are also known as check boxes are useful for the user to
select one or more options from available group of options. Check buttons are displayed

in the form of square shaped boxes. When check box is selected, a tick mark is
displayed on the check box. Check box is created as an object of Checkbutton class as,

c1=Checkbutton(f, text="Python", bg='yellow', fg='red', font=('Times',20,'italic'))

Here, ‘c1’ is the object of Checkbutton class, ‘f’ represents the frame for which the check button
is created as a child. The ‘text’ option represents the text to be display on the check box, ‘bg’
represents the background color and ‘fg’ represents the fore ground color of the check box, ‘font ‘
represents a tuple that contains font name, size and style.

5. Radio button: A radio button is similar to a check box, but it is used to select only one
option from a group of available options. A radio button is displayed in the form of
round shaped button. The user cannot select more than one option. When a radio

button is selected, there appears a dot in the radio button. We can create a radio button
as an object of the Radiobutton class as,

r1=Radiobutton(f, text="male", bg='green', fg='red', font=('Times',20,'italic'),

value=0)

Here, ‘r1’ is the object of Radiobutton class, ‘f’ represents the frame for which the radio button is
created as a child. The ‘text’ option represents the text to be display on the radio button, ‘bg’
represents the background color and ‘fg’ represents the fore ground color of the radio button,
‘font ‘ represents a tuple that contains font name, size and style, ‘value’ represents a value that
is set to this object when the radio button is clicked..

WAP to illustrate button, label, text, checkbox and radio button
from tkinter import *
def buttonClick(self):
 print ("You have cliked Ok button")
 root=Tk()
root.title ("Button Example")
f=Frame(root,bg="blue",height=700,width=1200,cursor='cross')
f.propagate(0)
f.pack()
b=Button(f, text="Ok", width=15,height=3, bg="yellow", fg="blue")
b.pack()

b.bind("<Button-1>", buttonClick)

l=Label(f, text=" Label Demo",width=25,height=3,
font=('Times',14,'bold'), fg='blue',bg='yellow')
l.pack()
t=Text(f,width=20,
height=3,font=('Times',20,'italic'),fg='blue',bg="yellow",wrap=WORD)
t.insert(END," Text Demo")

VI Sem BSc- PMCs SSCASC@Tumkur

SP_Python Programming 79

t.pack(side=LEFT)

c1=Checkbutton(f, text="Python",bg='yellow',fg='red',
font=('Times',20,'italic'))
c1.pack(side=LEFT)
c2=Checkbutton(f, text="Networking",bg='yellow',fg='red',
font=('Times',20,'italic'))
c2.pack(side=LEFT)
c3=Checkbutton(f, text="Java",bg='yellow',fg='red',
font=('Times',20,'italic'))
c3.pack(side=LEFT)
r1=Radiobutton(f, text="male", bg='green',fg='red',
font=('Times',20,'italic'),value=0)
r1.pack(side=LEFT)
r2=Radiobutton(f, text="female", bg='green',fg='red',
font=('Times',20,'italic'),value=1)
r2.pack(side=LEFT)
root.mainloop()

WAP to draw BAR chart/graph
import matplotlib.pyplot as plt
left = [1, 2, 3, 4, 5]
height = [10, 24, 0, 4, 50]
tick_label = ['one', 'two', 'three', 'four', 'five']
plt.bar(left, height, tick_label = tick_label,

 width = 0.8, color = ['red', 'green'])
plt.xlabel('x - axis')
plt.ylabel('y - axis')
plt.title('My bar chart!')
plt.show()

WAP to draw PIE chart/graph
import matplotlib.pyplot as plt

activities = ['routine', 'sleep', 'work', 'play']

slices = [3, 7, 8, 6]
colors = ['r', 'y', 'g', 'b']
plt.pie(slices, labels = activities, colors=colors,
 startangle=90, shadow = True, explode = (0, 0.1, 0, 0),
 radius = 1.2, autopct = '%1.2f%%')
plt.legend()
plt.show()

--- Good Luck ---

	Interactive Mode
	Script Mode
	Assigning value to a constant in Python
	a. Numeric Literals : Numeric Literals are immutable (unchangeable). Numeric literals can belong to 3 different numerical types Integer, Float and Complex.
	b. String literals : A string literal is a sequence of characters surrounded by quotes. We can use both - single, double or triple quotes for a string. Character literal is a single character surrounded by single or double quotes.
	E.g. str=”SSCASCT”
	c. Boolean literals : A Boolean literal can have any of the two values: True or False.
	E.g. x=true
	Y=false
	d. Special literals: Python contains one special literal i.e. None. We use it to specify to that field that is not created.
	E.g. k=none

